• Title/Summary/Keyword: Composition operator

Search Result 92, Processing Time 0.024 seconds

WEIGHTED COMPOSITION OPERATORS FROM F(p, q, s) INTO LOGARITHMIC BLOCH SPACE

  • Ye, Shanli
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.4
    • /
    • pp.977-991
    • /
    • 2008
  • We characterize the boundedness and compactness of the weighted composition operator $uC_{\psi}$ from the general function space F(p, q, s) into the logarithmic Bloch space ${\beta}_L$ on the unit disk. Some necessary and sufficient conditions are given for which $uC_{\psi}$ is a bounded or a compact operator from F(p,q,s), $F_0$(p,q,s) into ${\beta}_L$, ${\beta}_L^0$ respectively.

BOUNDED, COMPACT AND SCHATTEN CLASS WEIGHTED COMPOSITION OPERATORS BETWEEN WEIGHTED BERGMAN SPACES

  • Wolf, Elke
    • Communications of the Korean Mathematical Society
    • /
    • v.26 no.3
    • /
    • pp.455-462
    • /
    • 2011
  • An analytic self-map ${\phi}$ of the open unit disk $\mathbb{D}$ in the complex plane and an analytic map ${\psi}$ on $\mathbb{D}$ induce the so-called weighted composition operator $C_{{\phi},{\psi}}$: $H(\mathbb{D})\;{\rightarrow}\;H(\mathbb{D})$, $f{\mapsto} \;{\psi}\;(f\;o\;{\phi})$, where H($\mathbb{D}$) denotes the set of all analytic functions on $\mathbb{D}$. We study when such an operator acting between different weighted Bergman spaces is bounded, compact and Schatten class.

COMPLEX SYMMETRIC WEIGHTED COMPOSITION-DIFFERENTIATION OPERATORS ON H2

  • Lian Hu;Songxiao Li;Rong Yang
    • Bulletin of the Korean Mathematical Society
    • /
    • v.60 no.5
    • /
    • pp.1141-1154
    • /
    • 2023
  • In this paper, we study the complex symmetric weighted composition-differentiation operator D𝜓,𝜙 with respect to the conjugation JW𝜉,𝜏 on the Hardy space H2. As an application, we characterize the necessary and sufficient conditions for such an operator to be normal under some mild conditions. Finally, the spectrum of D𝜓,𝜙 is also investigated.

SOME CLASSES OF OPERATORS RELATED TO (m, n)-PARANORMAL AND (m, n)*-PARANORMAL OPERATORS

  • Shine Lal Enose;Ramya Perumal;Prasad Thankarajan
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1075-1090
    • /
    • 2023
  • In this paper, we study new classes of operators k-quasi (m, n)-paranormal operator, k-quasi (m, n)*-paranormal operator, k-quasi (m, n)-class 𝒬 operator and k-quasi (m, n)-class 𝒬* operator which are the generalization of (m, n)-paranormal and (m, n)*-paranormal operators. We give matrix characterizations for k-quasi (m, n)-paranormal and k-quasi (m, n)*-paranormal operators. Also we study some properties of k-quasi (m, n)-class 𝒬 operator and k-quasi (m, n)-class 𝒬* operators. Moreover, these classes of composition operators on L2 spaces are characterized.

HYPERCYCLICITY OF WEIGHTED COMPOSITION OPERATORS ON THE UNIT BALL OF ℂN

  • Chen, Ren-Yu;Zhou, Ze-Hua
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.5
    • /
    • pp.969-984
    • /
    • 2011
  • This paper discusses the hypercyclicity of weighted composition operators acting on the space of holomorphic functions on the open unit ball $B_N$ of $\mathbb{C}^N$. Several analytic properties of linear fractional self-maps of $B_N$ are given. According to these properties, a few necessary conditions for a weighted composition operator to be hypercyclic in the space of holomorphic functions are proved. Besides, the hypercyclicity of adjoint of weighted composition operators are studied in this paper.

NORM OF THE COMPOSITION OPERATOR MAPPING BLOCH SPACE INTO HARDY OR BERGMAN SPACE

  • Kwon, Ern-Gun;Lee, Jin-Kee
    • Communications of the Korean Mathematical Society
    • /
    • v.18 no.4
    • /
    • pp.653-659
    • /
    • 2003
  • Let $1{\;}\leq{\;}p{\;}\infty{\;}and{\;}{\alpha}{\;}>{\;}-1$. If f is a holomorphic self-map of the open unit disc U of C with f(0) = 0, then the quantity $\int_U\;\{\frac{$\mid$f'(z)$\mid$}{1\;-\;$\mid$f(z)$\mid$^2}\}^p\;(1\;-\;$\mid$z$\mid$)^{\alpha+p}dxdy$ is equivalent to the operator norm of the composition operator $C_f{\;}:{\;}B{\;}\rightarrow{\;}A^{p,{\alpha}$ defined by $C_fh{\;}={\;}h{\;}\circ{\;}f{\;}-{\;}h(0)$, where B and $A^{p,{\alpha}$ are the Bloch space and the weighted Bergman space on U respectively.