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SOME CLASSES OF OPERATORS RELATED TO

(m,n)-PARANORMAL AND (m,n)∗-PARANORMAL

OPERATORS

Shine Lal Enose, Ramya Perumal, and Prasad Thankarajan

Abstract. In this paper, we study new classes of operators k-quasi
(m,n)-paranormal operator, k-quasi (m,n)∗-paranormal operator, k-qu-

asi (m,n)-class Q operator and k-quasi (m,n)-class Q∗ operator which

are the generalization of (m,n)-paranormal and (m,n)∗-paranormal op-
erators. We give matrix characterizations for k-quasi (m,n)-paranormal

and k-quasi (m,n)∗-paranormal operators. Also we study some proper-
ties of k-quasi (m,n)-class Q operator and k-quasi (m,n)-class Q∗ oper-

ators. Moreover, these classes of composition operators on L2 spaces are

characterized.

1. Introduction and preliminaries

Let B(H) be the algebra of all bounded linear operators defined on an infi-
nite dimensional complex separable Hilbert space H. For T ∈ B(H), N (T ) and
R(T ) denote the null space and range of T , respectively. An operator T ∈ B(H)
is said to be hyponormal if TT ∗ ≤ T ∗T , paranomal if ∥Tx∥2 ≤ ∥T 2x∥∥x∥, ∗-
paranomal if ∥T ∗x∥2 ≤ ∥T 2x∥∥x∥, n∗-paranomal if ∥T ∗x∥n ≤ ∥Tnx∥∥x∥n−1

for all x ∈ H and class Q if T ∗2T 2 − 2T ∗T + I ≥ 0 ([3, 4, 14]). An op-
erator T ∈ B(H) is called a class Q∗ operator if T ∗2T 2 − 2TT ∗ + I ≥ 0
[16]. It is well known that all paranormal operators are of class Q and all ∗-
paranormal operators are in class Q∗. For m ∈ R+, n ≥ 1, T ∈ B(H) is called
(m,n)-paranomal if ∥Tx∥n+1 ≤ m∥Tn+1x∥∥x∥n for all x ∈ H and (m,n)∗-
paranomal if ∥T ∗x∥n+1 ≤ m∥Tn+1x∥∥x∥n for all x ∈ H ([2]). As an extension
of (m,n)-paranomal and (m,n)∗-paranomal the authors studied (m,n)-class Q
and (m,n)-class Q∗ operators ([12]). An operator T is called (m,n)-class Q
if ∥Tx∥2 ≤ m

2
n+1

n+1

(
∥Tn+1x∥2 + n∥x∥2

)
for every x ∈ H, and (m,n)-class Q∗
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if ∥T ∗x∥2 ≤ m
2

n+1

n+1

(
∥Tn+1x∥2 + n∥x∥2

)
for every x ∈ H ([12]). The following

inclusion holds:

hyponormal ⊆ paranormal ⊆ (m,n)-paranormal ⊆ (m,n)-class Q,

(m,n)∗-paranormal ⊆ (m,n)-class Q∗

see ([2, 4, 12]).
Let (X,A, µ) be a σ-finite measure space. A transformation T is said to be

measurable if T−1(B) ∈ A for every B ∈ A. If T is a nonsingular measur-

able transformation on (X,A, µ) and the Randon-Nikodym derivative dµT−1

dµ

denoted by h, is essentially bounded, then the composition operator CT on
L2(µ) is defined by CT f = f ◦ T , f ∈ L2(µ) [15]. Let L∞(µ) denote the space
of all essentially bounded complex valued measurable functions on X. For
π ∈ L∞(µ), the multiplication operator Mπ on L2(µ) is given by Mπf = πf ,
f ∈ L2(µ). The weighted composition operator W on L2(X,A, µ) induced by
T and a complex valued measurable function π is given by

W = π(f ◦ T )

for f ∈ L2(µ). Let πk denote π(π ◦ T )(π ◦ T 2) · · · (π ◦ T k−1). Then, W k(f) =
πk(f ◦ T )k [11]. More details on general properties of (measure based) com-
position operators can be found in [10, 15]. The conditional expectation oper-
ator E(·|T−1(A)) = E(f) is defined for each non-negative function f ∈ Lp(µ),
1 ≤ p < ∞ and is uniquely determined by the conditions

(i) E(f) is T−1(A) measurable.
(ii) If B is any T−1(A) measurable set for which

∫
B
fdµ converges, then∫

B
fdµ =

∫
B
E(f)dµ.

The conditional expectation operator E satisfies the following:
For f, g ∈ L2(µ),

(i) E(g) = g if and only if g is T−1(A) measurable.
(ii) If g is T−1(A) measurable, then E(fg) = E(f)g.
(iii) E(fg ◦ T ) = (E(f))(g ◦ T ) and E(E(f)g) = E(f)E(g).
(iv) E(1) = 1, E is the identity operator in L2(µ) if and only if T−1(A) = A,

and E is the projection operator from L2(µ) onto C(L2(µ)).

We refer the reader to [1, 8, 9, 13] for more details on the properties of con-
ditional expectation.

In this paper, we introduce new classes of operators, k-quasi (m,n)-class Q
and k-quasi (m,n)-class Q∗. In ([2]) P. Dharmarha and S. Ram introduced
(m,n)-paranomal and (m,n)∗-paranomal operators and studied some of its
properties. Here we consider k-quasi (m,n)∗-paranomal operators which in-
clude (m,n)∗-paranomal operators. Note that k-quasi (m,n)∗-paranomal op-
erators are k-quasi (m,n)-class Q∗ operators.
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2. k-quasi (m,n)∗-paranormal operators and k-quasi
(m,n)-paranormal operators

In this section we study some properties of k-quasi (m,n)∗-paranormal op-
erators and k-quasi (m,n)-paranormal operators. Also we give matrix charac-
terizations of these classes of operators.

Definition 2.1. An operator T ∈ B(H) is said to be k-quasi (m,n)-paranormal
if

∥TT kx∥n+1 ≤ m∥Tn+1T kx∥∥T kx∥n for all x ∈ H.

From the definition, it is clear that every (m,n)-paranormal operators are
k-quasi (m,n)-paranormal operators. The reverse inclusion need not be true
in general. For example, if T = ( 0 1

0 0 ), then T is a k-quasi (m,n)-paranormal
operator for k ≥ 2. But T is not (25, 3)-paranormal operator.

Definition 2.2. Let m ∈ R+ and n, k ∈ N. An operator T ∈ B(H) is said to
be k-quasi (m,n)∗-paranormal if

∥T ∗T kx∥n+1 ≤ m∥Tn+1T kx∥∥T kx∥n for all x ∈ H.

In particular if k = 0 and m = 1, then this class of operators coincides
with the class of n∗-paranormal operators [14]. If k = 0 and m = n = 1, then
k-quasi (m,n)∗-paranormal operators coincide with ∗-paranormal operators.
The following example shows that there is an operator which is k-quasi (m,n)∗-
paranormal but not (m,n)∗-paranormal, That is, the class of k-quasi (m,n)∗-
paranormal operators is larger than the class of (m,n)∗-paranormal operators.

Example 2.3. Let

T =

(
0 0
1 0

)
.

If k ≥ 2, then T is a k-quasi (m,n)∗-paranormal operator. But T is not
(25, 3)∗-paranormal.

Now, we give some properties of k-quasi (m,n)∗-paranormal operators.

Theorem 2.4. Let T ∈ B(H). Then T is k-quasi (m,n)∗-paranormal if and
only if

(2.1) m
2

n+1T ∗kT ∗n+1Tn+1T k−(n+1) anT ∗kTT ∗T k+m
2

n+1 n an+1T ∗kT k ≥ 0

for all a ≥ 0.

Proof. Suppose that T is a k-quasi (m,n)∗-paranormal operator. Then by the
definition,

m
2

n+1 ⟨|Tn+1|2T kx, T kx⟩
1

n+1 ⟨T kx, T kx⟩
n

n+1 ≥ ⟨|T ∗|2T kx, T kx⟩,∀x ∈ H.

By the generalized arithmetic-geometric mean inequality, it follows that

1

n+ 1
⟨a−nm

2
n+1 |Tn+1|2T kx, T kx⟩+ n

n+ 1
⟨a m

2
n+1T kx, T kx⟩
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≥ ⟨a−nm
2

n+1 |Tn+1|2T kx, T kx⟩
1

n+1 ⟨a m
2

n+1T kx, T kx⟩
n

n+1

= m
2

n+1 ⟨|Tn+1|2T kx, T kx⟩
1

n+1 ⟨T kx, T kx⟩
n

n+1

≥ ⟨|T ∗|2T kx, T kx⟩.
Thus,

a−n

n+ 1
m

2
n+1 ⟨T ∗kT ∗n+1Tn+1T kx, x⟩+ na

n+ 1
m

2
n+1 ⟨T ∗kT kx, x⟩

− ⟨T ∗kTT ∗T kx, x⟩ ≥ 0.

Hence,

m
2

n+1T ∗kT ∗n+1Tn+1T k − (n+ 1) anT ∗kTT ∗T k +m
2

n+1 n an+1T ∗kT k ≥ 0

for all a ≥ 0. Conversely, suppose that (2.1) holds. Let x ∈ H with

⟨T ∗kT ∗n+1Tn+1T kx, x⟩ = 0. From (2.1),

m
2

n+1 n a⟨T ∗kT kx, x⟩ − (n+ 1)⟨T ∗kTT ∗T kx, x⟩ ≥ 0.

Letting a → 0, we get ⟨T ∗kTT ∗T kx, x⟩ = 0. Hence

m
2

n+1 ⟨|Tn+1|2T kx, T kx⟩
1

n+1 ⟨T kx, T kx⟩
n

n+1 ≥ ⟨|T ∗|2T kx, T kx⟩.

For x ∈ H with ⟨T ∗kT ∗n+1Tn+1T kx, x⟩ > 0, by taking

a =

(
⟨T ∗kT ∗n+1Tn+1T kx, x⟩

⟨T ∗kT kx, x⟩

) 1
n+1

in (2.1), we get

m
2

n+1 ⟨|Tn+1|2T kx, T kx⟩
1

n+1 ⟨T kx, T kx⟩
n

n+1 ≥ ⟨|T ∗|2T kx, T kx⟩.
Hence, T is k-quasi (m,n)∗-paranormal. □

Theorem 2.5. Let T ∈ B(H) be a k-quasi (m,n)∗-paranormal operator and
M be a closed subspace of H which is invariant under T . Then T |M is a
k-quasi (m,n)∗-paranormal operator.

Proof. Let B = T |M and P be the orthogonal projection on to M. Then
TP = PTP . Hence, B∗jBj = PT ∗jT jP for all j ∈ N. Since T is a k-quasi
(m,n)∗-paranormal operator, we have

m
2

n+1B∗kB∗n+1Bn+1Bk − (n+ 1) anB∗kBB∗Bk +m
2

n+1 n an+1B∗kBk

= PT ∗k(m
2

n+1T ∗n+1Tn+1 − (n+ 1)anTPT ∗ +m
2

n+1nan+1I)T kP

≥ PT ∗k(m
2

n+1T ∗n+1Tn+1 − (n+ 1)anTT ∗ +m
2

n+1nan+1I)T kP ≥ 0.

Hence, T |M is a k-quasi (m,n)∗-paranormal operator. □

Theorem 2.6. Let T ∈ B(H).

(i) If T is a (k+1)-quasi (m,n)∗-paranormal operator, then T is a k-quasi
(m,n+ 1)-paranormal operator.
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(ii) If T is a k-quasi (m,n)∗-paranormal operator, then T is a (k+1)-quasi
(m,n)∗-paranormal operator.

Proof. (i) Suppose that T is a (k+1)-quasi (m,n)∗-paranormal operator. Then

∥T ∗T k+1x∥n+1 ≤ m∥Tn+1T k+1x∥∥T k+1x∥n for all x ∈ H.

Now,

∥T k+1x∥2n+2 = ⟨T ∗T k+1x, T kx⟩n+1

≤ ∥T ∗T k+1x∥n+1∥T kx∥n+1

≤ m∥Tn+1T k+1x∥∥T k+1x∥n∥T kx∥n+1.

Thus, ∥TT kx∥n+2 ≤ m∥Tn+2T kx∥∥T kx∥n+1 for all x ∈ H. Hence, T is a
k-quasi (m,n+ 1)-paranormal operator.

(ii) Assume that T is a k-quasi (m,n)∗-paranormal operator. Then

∥T ∗T kx∥n+1 ≤ m∥Tn+1T kx∥∥T kx∥n for all x ∈ H.

Then for x = Tu, we get

∥T ∗T k+1u∥n+1 ≤ m∥Tn+1T k+1u∥∥T k+1u∥n for all u ∈ H.

Hence, T is a (k + 1)-quasi (m,n)∗-paranormal operator. □

The following theorem gives matrix representation for k-quasi (m,n)∗-para-
normal operators in terms of (m,n)∗-paranormal operators.

Theorem 2.7. Let T ∈ B(H) and R(T k) ̸= H. If T is a k-quasi (m,n)∗-
paranormal operator, then

T =

(
A B
0 C

)
on R(T k)⊕N (T ∗k),

where A is an (m,n)∗-paranormal operator on R(T k), Ck = 0 and σ(T ) =
σ(A) ∪ {0}.

Proof. Assume that T is a k-quasi (m,n)∗-paranormal operator. Then

∥T ∗T kx∥n+1 ≤ m∥Tn+1T kx∥∥T kx∥n for all x ∈ H.

Put T kx = z in the above equation we get

∥T ∗z∥n+1 ≤ m∥Tn+1z∥∥z∥n.

Since R(T k) is not dense in H, T = (A B
0 C ) on R(T k) ⊕ N (T ∗k), where A =

T |R(Tk)
. Therefore, ∥A∗z∥n+1 ≤ m∥An+1z∥∥z∥n for all z ∈ R(T k). Hence, A

is an (m,n)∗-paranormal operator on R(T k). Let x ∈ N (T ∗k). Then

T k(x) =

(
Ak

∑k−1
i=0 AiBCk−1−i

0 Ck

)(
0
x

)
∈ R(T k).

By ([6, Corollary 7]), Ck = 0. Also σ(T ) = σ(A) ∪ {0}. □
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Now we give some characterizations of k-quasi (m,n)-paranormal operators.

Theorem 2.8. Let T ∈ B(H). Then T is k-quasi (m,n)-paranormal if and
only if

(2.2) m
2

n+1T ∗kT ∗n+1Tn+1T k−(n+1) anT ∗kT ∗TT k+m
2

n+1 n an+1T ∗kT k ≥ 0

for all a ≥ 0.

Proof. Suppose that T is a k-quasi (m,n)-paranormal operator. Then by the
definition,

m
2

n+1 ⟨|Tn+1|2T kx, T kx⟩
1

n+1 ⟨T kx, T kx⟩
n

n+1 ≥ ⟨|T |2T kx, T kx⟩,∀x ∈ H.

By the generalized arithmetic-geometric mean inequality, it follows that

1

n+1
⟨a−nm

2
n+1 |Tn+1|2T kx, T kx⟩+ n

n+ 1
⟨a m

2
n+1T kx, T kx⟩ ≥ ⟨|T |2T kx, T kx⟩.

Hence,

m
2

n+1T ∗kT ∗n+1Tn+1T k − (n+ 1) anT ∗kT ∗TT k +m
2

n+1 n an+1T ∗kT k ≥ 0

for all a ≥ 0. Assume that (2.2) holds. Let x ∈ H be such that

⟨T ∗kT ∗n+1Tn+1T kx, x⟩ = 0.

Then from (2.2),

m
2

n+1 n a⟨T ∗kT kx, x⟩ − (n+ 1)⟨T ∗kT ∗TT kx, x⟩ ≥ 0

for every a ≥ 0. Letting a → 0, we get ⟨T ∗kT ∗TT kx, x⟩ = 0. Hence

m
2

n+1 ⟨|Tn+1|2T kx, T kx⟩
1

n+1 ⟨T kx, T kx⟩
n

n+1 ≥ ⟨|T |2T kx, T kx⟩.

Now, let x ∈ H be such that ⟨T ∗kT ∗n+1Tn+1T kx, x⟩ > 0. Put

a =

(
⟨T ∗kT ∗n+1Tn+1T kx, x⟩

⟨T ∗kT kx, x⟩

) 1
n+1

in (2.1), we get

m
2

n+1 ⟨|Tn+1|2T kx, T kx⟩
1

n+1 ⟨T kx, T kx⟩
n

n+1 ≥ ⟨|T |2T kx, T kx⟩.

Hence, T is k-quasi (m,n)-paranormal. □

The following theorem gives matrix characterizations for k-quasi (m,n)-
paranormal operators in terms of (m,n)-paranormal operators.

Theorem 2.9. Let T ∈ B(H) and R(T k) is not dense in H. The following
are equivalent:

(1) T is a k-quasi (m,n)-paranormal operator.

(2) T = (A B
0 C ) on R(T k) ⊕ N (T ∗k), where A is an (m,n) paranormal

operator on R(T k), Ck = 0 and σ(T ) = σ(A) ∪ {0}.
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Proof. Assume that T is a k-quasi (m,n)-paranormal operator. Since R(T k)

is not dense in H, T = (A B
0 C ) on R(T k) ⊕ N (T ∗k). Since T is a k-quasi

(m,n)-paranormal operator, we have

⟨(m
2

n+1T ∗n+1Tn+1 − (n+ 1) anT ∗T +m
2

n+1 n an+1I)x, x⟩

= ⟨(m
2

n+1A∗n+1An+1 − (n+ 1) anA∗A+m
2

n+1 n an+1I)x, x⟩ ≥ 0

for all x ∈ R(T k). Hence, A is an (m,n)-paranormal operator on R(T k). Let
x ∈ N (T ∗k). Then

T k(x) =

(
Ak

∑k−1
i=0 AiBCk−1−i

0 Ck

)(
0
x

)
∈ R(T k).

Hence, Ck = 0. By ([6, Corollary 7]), σ(T ) = σ(A) ∪ {0}. Conversely, let

T = (A B
0 C ) on R(T k)⊕N (T ∗k), where A is an (m,n)-paranormal operator on

R(T k) and Ck = 0. Thus

T k =

(
Ak

∑k−1
i=0 AiBCk−1−i

0 0

)
and T kT ∗k =

(
AkA∗k+

∑k−1
i=0 AiBCk−1−i(

∑k−1
i=0 AiBCk−1−i)∗ 0

0 0

)
= ( S 0

0 0 ), where

S = AkA∗k +
∑k−1

i=0 AiBCk−1−i(
∑k−1

i=0 AiBCk−1−i)∗. Since A is an (m,n)
paranormal operator, we have

T kT ∗k(m
2

n+1T ∗n+1Tn+1 − (n+ 1)anT ∗T +m
2

n+1nan+1I)T kT ∗k

=

(
S(m

2
n+1A∗n+1An+1 − (n+ 1)anA∗A+m

2
n+1nan+1I)S 0

0 0

)
≥ 0.

Let D = T ∗k(m
2

n+1T ∗n+1Tn+1 − (n + 1)anT ∗T + m
2

n+1nan+1I)T k. Then

T kDT ∗k ≥ 0. Let x ∈ H. Then x = y + z, where y ∈ R(T ∗k), z ∈ N (T k).

Since y ∈ R(T ∗k), there exists a sequence (xn) in H such that T ∗k(xn) → y.
Since z ∈ N (T k), Dz = 0 and ⟨Dx, x⟩ = ⟨Dy, y⟩ ≥ 0. Hence, T is a k-quasi
(m,n)-paranormal operator. □

3. k-quasi (m,n)-class Q and k-quasi (m,n)-class Q∗ operators

In this section, we study some extensions of k-quasi (m,n)-paranormal and
k-quasi (m,n)∗-paranormal operators namely k-quasi (m,n)-class Q and k-
quasi (m,n)-class Q∗. In ([12]), the authors studied (m,n)-class Q and (m,n)-
class Q∗ operators. It is evident that these classes are independent.

Definition 3.1. Let m ∈ R+ and n, k ∈ N. An operator T ∈ B(H) is said to
be a k-quasi (m,n)-class Q operator if

T ∗k
(
m

2
n+1T ∗n+1Tn+1 − (n+ 1)T ∗T +m

2
n+1 n I

)
T k ≥ 0.
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In particular if k = 1, then T is said to be a quasi (m,n)-class Q operator. If
m = n = 1, then this class of operators coincides with k-quasi class Q operators
[5].

Definition 3.2. Let m ∈ R+ and n, k ∈ N. An operator T ∈ B(H) is said to
be a k-quasi (m,n)-class Q∗ operator if

T ∗k
(
m

2
n+1T ∗n+1Tn+1 − (n+ 1)TT ∗ +m

2
n+1 n I

)
T k ≥ 0.

In particular if k = 1, then T is said to be a quasi (m,n)-class Q∗ operator.

Now we give some characterizations of k-quasi (m,n)-class Q operators.

Theorem 3.3. Let T ∈ B(H). Then T is a k-quasi (m,n)-class Q operator if

and only if m
2

n+1

n+1

(
∥T k+n+1x∥2 + n∥T kx∥2

)
≥ ∥T k+1x∥2 for all x ∈ H.

Proof. Let T be a k-quasi (m,n)-class Q operator. By definition, we have

⟨T ∗k
(
m

2
n+1T ∗n+1Tn+1 − (n+ 1)T ∗T +m

2
n+1 n I

)
T kx, x⟩ ≥ 0 ∀x ∈ H.

Therefore,

m
2

n+1 ⟨T ∗k+n+1T k+n+1x, x⟩ − (n+ 1) ⟨T ∗k+1T k+1x, x⟩

+m
2

n+1 n ⟨T ∗kT kx, x⟩ ≥ 0

if and only if m
2

n+1

n+1

(
∥T k+n+1x∥2 + n∥T kx∥2

)
≥ ∥T k+1x∥2 for all x ∈ H. □

Theorem 3.4. Let T ∈ B(H). Then λ
−m
n+1T is a k-quasi (m,n)-class Q oper-

ator, for all λ > 0 if and only if T is k-quasi (m,n)-paranormal.

Proof. Let λ
−m
n+1T be a k-quasi (m,n)-class Q operator, for all λ > 0. Then,

by definition, we have

(λ
−m
n+1T )∗k

[
m

2
n+1 (λ

−m
n+1T )∗n+1(λ

−m
n+1T )n+1 − (n+ 1)λ

−2m
n+1 T ∗T +m

2
n+1n I

]
(λ

−m
n+1T )k ≥ 0, λ > 0.

Then

(λ
−2mk
n+1 )T ∗k

[
m

2
n+1λ−2mT ∗n+1Tn+1 − (n+ 1)λ

−2m
n+1 T ∗T +m

2
n+1nI

]
T k ≥ 0, λ > 0

⇔ (λ
−2mk
n+1 )λ−2mT ∗k

[
m

2
n+1T ∗n+1Tn+1 − (n+ 1)λ

2mn
n+1 T ∗T +m

2
n+1nλ2mI

]
T k ≥ 0, λ > 0

⇔ T ∗k
[
m

2
n+1T ∗n+1Tn+1 − (n+ 1)(λ

2m
n+1 )nT ∗T +m

2
n+1n(λ

2m
n+1 )n+1I

]
T k ≥ 0, λ > 0

⇔ T ∗k
[
m

2
n+1T ∗n+1Tn+1 − (n+ 1)anT ∗T +m

2
n+1nan+1I

]
T k ≥ 0, a > 0
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if and only if T is a k-quasi (m,n)-paranormal operator. □

Theorem 3.5. Let T ∈ B(H) be a quasi (m,n)-class Q operator and A ∈ B(H)
be an isometric operator such that AT = TA. Then TA is a quasi (m,n)-
class Q operator.

Proof. Let S = TA. Since AT = TA, A∗A = I and T is a quasi (m,n)-class Q
operator, we have

m
2

n+1S∗n+2Sn+2 − (n+ 1)S∗2S2 +m
2

n+1 n S∗S

= m
2

n+2 (A∗T ∗)n+2(TA)n+2 − (n+ 1)(A∗T ∗)2(TA)2 +m
2

n+1 n A∗T ∗TA

= m
2

n+1T ∗n+2Tn+2 − (n+ 1)T ∗2T 2 +m
2

n+1 n T ∗T ≥ 0.

Hence S = TA is a quasi (m,n)-class Q operator. □

Theorem 3.6. Let T ∈ B(H) be a quasi (m,n)-class Q operator and T is
unitarily equivalent to an operator B ∈ B(H). Then B is a k-quasi (m,n)-
class Q operator.

Proof. Since T is unitarily equivalent to B, there exists a unitary operator
U ∈ B(H) such that B = U∗TU .

Now

B∗k
(
m

2
n+1B∗n+1Bn+1 − (n+ 1)B∗B +m

2
n+1 n I

)
Bk

= U∗T ∗kU
[
m

2
n+1U∗T ∗n+1Tn+1U − (n+ 1)U∗T ∗TU +m

2
n+1 nU∗U

]
U∗T kU

= U∗T ∗kU
[
U∗
(
m

2
n+1T ∗n+1Tn+1 − (n+ 1)T ∗T +m

2
n+1 nI

)
U
]
U∗T kU

= U∗T ∗k
(
m

2
n+1T ∗n+1Tn+1 − (n+ 1)T ∗T +m

2
n+1 n I

)
T kU.

Since T is a quasi (m,n)-class Q operator, we get

U∗T ∗k
(
m

2
n+1T ∗n+1Tn+1 − (n+ 1)T ∗T +m

2
n+1 n I

)
T kU ≥ 0.

Hence, B is a k-quasi (m,n)-class Q operator. □

Theorem 3.7. Let T ∈ B(H) be a k-quasi (m,n)-class Q operator. If R(T k) =
H, then T is an (m,n)-class Q operator.

Proof. Let y ∈ H. Since R(T k) = H, there exists a sequence (xi) in H such
that T k(xi) converges to y ∈ H. Since T is a k-quasi (m,n)-class Q operator,〈[

T ∗k
(
m

2
n+1T ∗n+1Tn+1 − (n+ 1)T ∗T +m

2
n+1 n I

)
T k
]
xi, xi

〉
≥ 0.

Then, ⟨(m
2

n+1T ∗n+1Tn+1 − (n + 1)T ∗T +m
2

n+1 n I)T kxi, T
kxi⟩ ≥ 0. Hence,

⟨(m
2

n+1T ∗n+1Tn+1 − (n + 1)T ∗T + m
2

n+1 n I)y, y⟩ ≥ 0. That is, T is an
(m,n)-class Q operator. □
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Theorem 3.8. Let T ∈ B(H) be a k-quasi (m,n)-class Q operator and R(T k)
̸= H. If

T =

(
A B
0 C

)
on R(T k)⊕N (T ∗k),

then A is an (m,n)-class Q operator on R(T k), Ck = 0 and σ(T ) = σ(A)∪{0}.

Proof. Since T is a k-quasi (m,n)-class Q operator, we have

m
2

n+1
(
∥T k+n+1y∥2 + n∥T ky∥2

)
≥ (n+ 1)∥T k+1y∥2.

Let z = T ky. Then

m
2

n+1
(
∥Tn+1z∥2 + n∥z∥2

)
≥ (n+ 1)∥Tz∥2.

Since A = T |R(Tk)
, m

2
n+1

(
∥An+1z∥2 + n∥z∥2

)
≥ (n + 1)∥Az∥2 for all z ∈

R(T k). Hence, A is an (m,n)-class Q operator on R(T k). Let x ∈ N (T ∗k).
Then

T k(x) =

(
Ak

∑k
i=0 A

iBCk−1−i

0 Ck

)(
0
x

)
∈ R(T k).

Hence, Ck = 0. By ([6, Corollary 7]), we get σ(T ) = σ(A) ∪ {0}. □

Now we give some characterizations of k-quasi (m,n)-class Q∗ operators.

Theorem 3.9. Let T ∈ B(H). T is a k-quasi (m,n)-class Q∗ operator if and

only if m
2

n+1

n+1

(
∥T k+n+1x∥2 + n∥T kx∥2

)
≥ ∥T ∗T kx∥2 for all x ∈ H.

Proof. The result follows by a similar argument as in Theorem 3.3. □

Theorem 3.10. Let T ∈ B(H). λ
−m
n+1T is a k-quasi (m,n)-class Q∗ operator,

for all λ > 0 if and only if T is a k-quasi (m,n)∗ paranormal operator.

Proof. The result follows by a similar argument as in Theorem 3.4. □

It is clear that the following results hold for k-quasi (m,n)-class Q∗ opera-
tors.

(i) If T ∈ B(H) is a quasi (m,n)-class Q∗ operator and A ∈ B(H) is an
isometric operator such that AT = TA, then TA is a quasi (m,n)-
class Q∗ operator.

(ii) If T ∈ B(H) is a quasi (m,n)-class Q∗ operator and T is unitarily
equivalent to an operator B ∈ B(H), then B is a k-quasi (m,n)-classQ∗

operator.

(iii) If T ∈ B(H) is a k-quasi (m,n)-class Q∗ operator and R(T k) = H,
then T is an (m,n)-class Q∗ operator.
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4. k-quasi (m,n)-class Q and k-quasi (m,n)-class Q∗ composition
operators

In this section, we give measure theoretical characterizations of k-quasi
(m,n)-class Q and k-quasi (m,n)-class Q∗ composition operators on L2-spaces.
Study of these classes of operator in the view point of composition operator
helps to create more examples for the above classes of operators.

Proposition 4.1 ([1,7]). Let P be the projection from L2(X,A, µ) onto R(CT ).
Then the following results holds for every f ∈ L2(µ)

(i) C∗
T f = h · E(f) ◦ T−1.

(ii) Ck
T f = f ◦ T k, C∗k

T f = hkE(f) ◦ T−k.
(iii) CTC

∗
T f = (h ◦ T )Pf , C∗

TCT = hf .

Theorem 4.2. CT is a k-quasi (m,n)-class Q operator if and only if

m
2

n+1 (hk+n+1 + n hk) ≥ (n+ 1)hk+1.

Proof. By definition, CT is a k-quasi (m,n)-class Q if and only if〈
(m

2
n+1C∗k+n+1

T Ck+n+1
T − (n+ 1)C∗k+1

T Ck+1
T +m

2
n+1 n C∗k

T Ck
T )f, f

〉
≥ 0

for every f ∈ L2(µ). Now

C∗k+n+1
T Ck+n+1

T f = C∗k+n+1
T (f ◦ T k+n+1)

= hk+n+1E(f ◦ T k+n+1) ◦ T−(k+n+1)

= hk+n+1f.

Also, C∗k+1
T Ck+1

T f = hk+1f and C∗k
T Ck

T f = hkf . Hence, CT is a k-quasi
(m,n)-class Q operator if and only if

m
2

n+1 (hk+n+1 + n hk) ≥ (n+ 1)hk+1. □

Theorem 4.3. C∗
T is a k-quasi (m,n)-class Q operator if and only if

m
2

n+1
(
hk+n+1 ◦ T k+n+1 + n hk ◦ T k

)
≥ (n+ 1)hk+1 ◦ T k+1.

Proof. By definition, C∗
T is a k-quasi (m,n)-class Q if and only if〈

(m
2

n+1Ck+n+1
T C∗k+n+1

T − (n+ 1)Ck+1
T C∗k+1

T +m
2

n+1 n Ck
TC

∗k
T )f, f

〉
≥ 0

for every f ∈ L2(µ). We have

Ck+n+1
T C∗k+n+1

T f = Ck+n+1
T

(
hk+n+1E(f) ◦ T−(k+n+1)

)
=
(
hk+n+1 E(f) ◦ T−(k+n+1)

)
◦ T k+n+1

= hk+n+1 ◦ T k+n+1E(f)

= hk+n+1 ◦ T k+n+1f.

Similarly, we get Ck+1
T C∗k+1

T f = hk+1 ◦ T k+1f and Ck
TC

∗k
T f = hk ◦ T kf .
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Hence, C∗
T is a k-quasi (m,n)-class Q operator if and only if

m
2

n+1
(
hk+n+1 ◦ T k+n+1 + n hk ◦ T k

)
≥ (n+ 1)hk+1 ◦ T k+1. □

Example 4.4. Let X = N ∪ {0}, A = P (X) and µ be the measure defined by

µ(A) =
∑
k∈A

mk,

where

mk =

{
1 if k = 0,

1
4k−1 if k ≥ 1.

Let T : X → X defined by

T (k) =

{
0 k = 0, 1,
k − 1 k ≥ 2.

Then for q > 1, we have

T q(k) =

{
0 k = 0, 1, 2, . . . , q,
k − q k ≥ q + 1.

Therefore, h(k) = µT−1({k})
µ{k} =

{
2 k = 0,
1
4 k ≥ 1.

Then, for q > 1 we have

hq(k) =

{
2 + 1

4 + 1
42 + · · ·+ 1

4q−1 k = 0,
1
4q k ≥ 1.

If m ≥ 2 and n = 3, then m
1
2 (h6+3h2) ≥ 4h3 for k = 2. Hence CT is a 2-quasi

(m,n)-class Q operator.

Theorem 4.5. Let CT be the composition operator of T on L2(µ). Then

(i) CT is a k-quasi (m,n)-class Q∗ operator if and only if

m
2

n+1 (hk+n+1 + n hk) ≥ (n+ 1)hk+1 ◦ T k+1.

(ii) C∗
T is a k-quasi (m,n)-class Q∗ operator if and only if

m
2

n+1
(
hk+n+1 ◦ T k+n+1 + n hk ◦ T k

)
≥ (n+ 1)hk+1.

Proof. (i) CT is a k-quasi (m,n)-class Q∗ operator if and only if〈
(m

2
n+1C∗k+n+1

T Ck+n+1
T − (n+ 1)Ck+1

T C∗k+1
T +m

2
n+1 n C∗k

T Ck
T )f, f

〉
≥ 0

for every f ∈ L2(µ). Now

C∗k+n+1
T Ck+n+1

T f = C∗k+n+1
T (f ◦ T k+n+1)

= hk+n+1E(f ◦ T k+n+1) ◦ T−(k+n+1)

= hk+n+1f.

Similarly, we get C∗k
T Ck

T f = hkf . Also,

Ck+1
T C∗k+1

T f = Ck+1
T (hk+1E(f) ◦ T k+1)
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= (hk+1E(f) ◦ T k+1) ◦ T k+1

= hk+1 ◦ T k+1f.

Hence, CT is a k-quasi (m,n)-class Q∗ operator if and only if

m
2

n+1 (hk+n+1 + n hk) ≥ (n+ 1)hk+1 ◦ T k+1.

(ii) C∗
T is a k-quasi (m,n)-class Q operator if and only if〈

(m
2

n+1Ck+n+1
T C∗k+n+1

T − (n+ 1)C∗k+1
T Ck+1

T +m
2

n+1 n Ck
TC

∗k
T )f, f

〉
≥ 0

for every f ∈ L2(µ). Now,

Ck+n+1
T C∗k+n+1

T f = Ck+n+1
T

(
hk+n+1E(f) ◦ T−(k+n+1)

)
=
(
hk+n+1 E(f) ◦ T−(k+n+1)

)
◦ T k+n+1

= hk+n+1 ◦ T k+n+1E(f)

= hk+n+1 ◦ T k+n+1f.

Similarly, we get Ck
TC

∗k
T f = hk ◦ T kf . Also,

C∗k+1
T Ck+1

T f = C∗k+1
T (f ◦ T k+1)

= hk+1E(f ◦ T k+1) ◦ T−(k+1)

= hk+1f.

Hence, C∗
T is a k-quasi (m,n)-class Q∗ operator if and only if

m
2

n+1
(
hk+n+1 ◦ T k+n+1 + n hk ◦ T k

)
≥ (n+ 1)hk+1. □

Example 4.6. If we choose m ≥ 2428 and n = 3 in Example 4.4, we see that
CT is a 2-quasi (m,n)-class Q∗ operator.

Now we give characterizations for k-quasi (m,n)-class Q weighted composi-
tion operators on L2(µ).

Proposition 4.7 ([1]). If W is a weighted composition operator induced by T
and π, then the following statements hold.

(i) W ∗W (f) = hE(|π|2) ◦ T−1(f),
(ii) WW ∗(f) = π(h ◦ T )E(πf),
(iii) W ∗kW k(f) = hkEk(|πk|2) ◦ T−k(f) and
(iv) W kW ∗kf = πk(hk ◦ T k)E(π̄kf),

where πk = π(π◦T )(π◦T 2) · · · (π◦T k−1) and Ek is the conditional expectation.

For f ∈ L2(µ), let Jkf = hkEk(|πk|2)◦T−k(f) and Lkf = πk(hk◦T k)E(π̄kf).

Theorem 4.8. Let W be the weighted composition operator induced by T on
L2(µ). Then W is a k-quasi (m,n)-class Q operator if and only if

m
2

n+1 (Jk+n+1 + nJk) ≥ (n+ 1)Jk+1.
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Proof. By definition, W is a k-quasi (m,n)-class Q operator if and only if〈
(m

2
n+1W ∗k+n+1W k+n+1 − (n+1)W ∗k+1W k+1 +m

2
n+1 n W ∗kW k)f, f

〉
≥ 0

for every f ∈ L2(µ). Now,

W ∗k+n+1W k+n+1f = hk+n+1 Ek+n+1(|πk+n+1|2) ◦ T−(k+n+1)f

= Jk+n+1f.

Also, W ∗k+1W k+1f = hk+1Ek+1(|πk+1|2)◦T−(k+1)f = Jk+1f andW ∗kW kf =
hkEk(|πk|2) ◦ T−kf = Jkf . Hence, W is a k-quasi (m,n)-class Q operator if

and only if m
2

n+1 (Jk+n+1 + nJk) ≥ (n+ 1)Jk+1. □

Theorem 4.9. W ∗ is a k-quasi (m,n)-class Q operator if and only if

m
2

n+1 (Lk+n+1 + nLk) ≥ (n+ 1)Lk+1.

Proof. W ∗ is a k-quasi (m,n)-class Q operator if and only if〈
(m

2
n+1W k+n+1W ∗k+n+1 − (n+1)W k+1W ∗k+1 +m

2
n+1 n W kW ∗k)f, f

〉
≥ 0

for every f ∈ L2(µ).
We have

W k+n+1W ∗k+n+1f = πk+n+1(hk+n+1 ◦ T k+n+1)E(πk+n+1f) = Lk+n+1f.

Similarly,

W k+1W ∗k+1f = πk+1(hk+1 ◦ T k+1)E(πk+1f) = Lk+1f

and
W kW ∗kf = πk(hk ◦ T k)E(π̄kf) = Lkf.

Hence, W ∗ is a k-quasi (m,n)-class Q operator if and only if

m
2

n+1 (Lk+n+1 + nLk) ≥ (n+ 1)Lk+1. □

Theorem 4.10. Let W be the weighted composition operator induced by T on
L2(µ). Then

(i) W is k-quasi (m,n)-class Q∗ if and only if

m
2

n+1 (Jk+n+1 + nJk) ≥ (n+ 1)Lk+1.

(ii) W ∗ is k-quasi (m,n)-class Q∗ if and only if

m
2

n+1 (Lk+n+1 + nLk) ≥ (n+ 1)Jk+1.

Proof. (i) W is k-quasi (m,n)-class Q∗ if and only if〈
(m

2
n+1W ∗k+n+1W k+n+1 − (n+ 1)W k+1W ∗k+1 +m

2
n+1 n W ∗kW k)f, f

〉
≥ 0

for every f ∈ L2(µ). Now,

W ∗k+n+1W k+n+1f = hk+n+1 Ek+n+1(|πk+n+1|2) ◦ T−(k+n+1)f

= Jk+n+1f.
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Similarly,

W ∗kW kf = hk Ek(|πk|2) ◦ T−kf = Jkf.

Also,

W k+1W ∗k+1f = πk+1(hk+1 ◦ T k+1)E(πk+1f) = Lk+1f.

Hence, W is a k-quasi (m,n)-class Q∗ operator if and only if

m
2

n+1 (Jk+n+1 + nJk) ≥ (n+ 1)Lk+1.

(ii) W ∗ is k-quasi (m,n)-class Q∗ if and only if〈
(m

2
n+1W k+n+1W ∗k+n+1 − (n+ 1)W ∗k+1W k+1 +m

2
n+1 n W kW ∗k)f, f

〉
≥ 0

for every f ∈ L2(µ). Also,

W k+n+1W ∗k+n+1f = πk+n+1(hk+n+1 ◦ T k+n+1)E(πk+n+1f) = Lk+n+1f.

Similarly,

W kW ∗kf = πk(hk ◦ T k)E(π̄kf) = Lkf.

Also, W ∗k+1W k+1f = hk+1 Ek+1(|πk+1|2) ◦ T−(k+1)f = Jk+1f . Hence, W ∗

is a k-quasi (m,n)-class Q∗ operator if and only if m
2

n+1 (Lk+n+1 + nLk) ≥
(n+ 1)Jk+1. □
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