NORM OF THE COMPOSITION OPERATOR MAPPING BLOCH SPACE INTO HARDY OR BERGMAN SPACE

ERN GUN KWON AND JINKEE LEE

ABSTRACT. Let $1 \le p < \infty$ and $\alpha > -1$. If f is a holomorphic self-map of the open unit disc U of $\mathbb C$ with f(0) = 0, then the quantity

 $\int_{U} \left\{ \frac{|f'(z)|}{1 - |f(z)|^2} \right\}^p (1 - |z|)^{\alpha + p} dxdy$

is equivalent to the operator norm of the composition operator $C_f: \mathcal{B} \to A^{p,\alpha}$ defined by $C_f h = h \circ f - h(0)$, where \mathcal{B} and $A^{p,\alpha}$ are the Bloch space and the weighted Bergman space on U respectively.

1. Introduction

Consider holomorphic mappings f of the unit ball of \mathbb{C}^n into the unit disc U of \mathbb{C} . It is said that f has the pull-back property if $h \circ f \in BMOA$ whenever h belongs to the Bloch space \mathcal{B} on U. Since the pull-back property was first studied for monomials in [1], there have been several examples and conditions for f to have the pull-back property ([1], [2], [7]). When n = 1, if f is a function of Yamashita's hyperbolic BMOA class then the composition operator \mathcal{C}_f defined by $\mathcal{C}_f(h) = h \circ f$ takes \mathcal{B} into BMOA ([6], [7]). In view of a known parallelism between the Hardy space H^p and the Yamashita hyperbolic Hardy class H^p_σ , the first author gave a necessary and sufficient condition for \mathcal{C}_f to take \mathcal{B} into H^{2p} ([6]).

We, in this paper, restrict ourselves to n=1 and give a quantity equivalent to the operator norm $||\mathcal{C}_f||$ of the composition operator \mathcal{C}_f that takes \mathcal{B} boundedly into the weighted Bergman space $A^{p,\alpha}$.

Received July 18, 2002.

²⁰⁰⁰ Mathematics Subject Classification: 30D05, 30D45, 30D55.

Key words and phrases: Bloch space, composition operator, $A^{p,\alpha}$, space H^p space. This work was supported by a research fund of Andong National University in 2002.

THEOREM 1. Let $f: U \to U$ be a holomorphic function with f(0) = 0. For $1 \le p < \infty$ and $-1 < \alpha < \infty$, the bounded operator $\mathcal{C}_f^0: \mathcal{B} \to A^{p,\alpha}$ defined by $\mathcal{C}_f^0 h = h \circ f - h(0)$ has its operator norm equivalent to the quantity

(1.1)
$$\left\{ \int_{U} (1-|z|)^{\alpha+p} \left(\frac{|f'(z)|}{1-|f(z)|^2} \right)^p dx dy \right\}^{1/p}.$$

By the lemma of Schwarz-Pick, it is easy to see that (1.1) remains bounded for any holomorphic self map f of U. What Theorem 1 expresses is that there are positive constants C_1 and C_2 independent of f such that

$$C_1 \| \mathcal{C}_f^0 \| \le (1.1) \le C_2 \| \mathcal{C}_f^0 \|.$$

COROLLARY 2. Let $f: U \to U$ be a holomorphic function. For $1 \leq p < \infty$ and $-1 < \alpha < \infty$, the bounded operator $\mathcal{C}_f^0: \mathcal{B} \to A^{p,\alpha}$ defined by $\mathcal{C}_f^0 h = h \circ \varphi_{f(0)} \circ f - h(0)$ has its operator norm equivalent to the quantity (1.1).

2. Preliminaries

We introduce a few facts that we need in the sequel, most of which are well known.

The group of automorphisms of U will be denoted by \mathcal{M} . It is known that it consists of functions of the form $e^{i\beta}\varphi_a$, where β is a real number and

$$\varphi_a(z) = \frac{a-z}{1-\bar{a}z}, \quad z \in U.$$

For $1 \leq p < \infty$ and for f subharmonic in U, we set

$$||f||_p := \sup_r \Big(\int_0^{2\pi} |f(re^{i\theta})|^p \frac{d\theta}{2\pi} \Big)^{1/p}.$$

Then the class $H^p = H^p(U)$ consists of those f holomorphic in U for which $||f||_p < \infty$.

The Yamashita hyperbolic Hardy class H^p_{σ} is defined as the set of those holomorphic self-maps f of U for which $||\sigma(f)||_p < \infty$, where $\sigma(z)$ denotes the hyperbolic distance of z and 0 in U, namely,

$$\sigma(z) = \frac{1}{2} \log \frac{1+|z|}{1-|z|}.$$

We set, following Yamashita,

$$\lambda(f) = \log \frac{1}{1 - |f|^2}$$
 and $f^{\sharp} = \frac{|f'|}{1 - |f|^2}$

for holomorphic self-maps f of U. It is obvious that $f \in H^p_\sigma$ if and only if $||\lambda(f)||_p < \infty$ and that f^{\sharp} is \mathcal{M} -invariant in the sense that $f^{\sharp} = (\varphi \circ f)^{\sharp}$ for any $\varphi \in \mathcal{M}$.

The Bloch space \mathcal{B} consists of holomorphic functions h in U for which

$$\sup_{z\in U}|h'(z)|(1-|z|^2)<\infty.$$

This is a Banach space, if the norm $||h||_{\mathcal{B}}$ of $h \in \mathcal{B}$ is defined to be the sum of |h(0)| and the left side of above inequality. A pair of Bloch functions $h_j, j = 1, 2$ are constructed such that

$$(2.1) (1-|z|^2)(|h_1'(z)|+|h_2'(z)|) \ge 1, \ z \in U$$

([7]). Then it follows that

$$(2.2) \frac{1}{1-|f|^2} \le |h_1' \circ f| + |h_2' \circ f| \le \frac{C}{1-|f|^2}$$

for holomorphic self-maps f, where $C = 2 \max(||h_1||_{\mathcal{B}}, ||h_2||_{\mathcal{B}})$. For $h \in \mathcal{B}$, it follows from Schwarz-Pick's Lemma ([5]) that

$$(2.3) |(h \circ f)'(z)| \le ||h||_{\mathcal{B}} f^{\sharp}(z) \le ||h||_{\mathcal{B}} \frac{1}{1 - |z|^2}, \quad z \in U.$$

For $-1 < \alpha < \infty$ and $0 , let <math>A^{p,\alpha}$ denote the weighted Bergman space of holomorphic functions on U, that is,

$$\begin{split} A^{p,\alpha} &= \Big\{ f \text{ holomorphic on } U: ||f||_{A^{p,\alpha}} \\ &\equiv \Big(\int_{U} |f(z)|^{p} (1-|z|)^{\alpha} dx dy \Big)^{1/p} < \infty \Big\}. \end{split}$$

We note that H^p is the limiting space of $A^{p,\alpha}$ as $\alpha \to -1$. For h holomorphic in U, g-function of Paley defined by

$$g(heta) := g(h)(heta) = \Big(\int_0^1 |h'(re^{i heta})|^2 (1-r) \; dr\Big)^{1/2}, \quad 0 \le heta < 2\pi,$$

satisfies

$$(2.4) ||g(h)||_{L^p} \sim ||h||_p \text{if} h(0) = 0,$$

for $1 \leq p < \infty$ (see [4] and [8]). Here and after $\psi \sim \phi$ means the equivalence of two quantities in the sense that either both sides are zeroes or the quotient ψ/ϕ lies between two positive constants depending only on p.

The hyperbolic version of g-function is defined as

$$g_{\sigma}(heta):=g_{\sigma}(f)(heta)=\int_0^1 \left(f^{\sharp}(re^{i heta})
ight)^2 (1-r) \; dr, \quad 0\leq heta < 2\pi,$$

and then for $1 \le p < \infty$ it is satisfied that

(2.5)
$$||\lambda(f)||_p \sim ||g_\sigma(f)||_{L^p} \quad \text{if} \quad f(0) = 0.$$

See [6].

3. Proof of the results

For functions holomorphic in U and for $0 , <math>0 \le r < 1$, $M_p(r, f)$ is defined as usual by

$$M_p(r,f) = \left(rac{1}{2\pi}\int_0^{2\pi}|f(re^{i heta})|^pd heta
ight)^{1/p}.$$

For simplicity, we denote $\psi \lesssim \phi$ meaning that either $\psi \sim \phi$ or the quotient ψ/ϕ is bounded by a positive constant depending only on p.

LEMMA. Let f be holomorphic in U. Then, for $1 \leq p < \infty$ and $-1 < \alpha < \infty$,

$$(3.1) \quad \int_0^1 (1-r)^\alpha M_p^p(r,f) \,\, dr \sim \int_0^1 (1-r)^{\alpha+p} M_p^p(r,f') \,\, dr + |f(0)|^p.$$

PROOF. Applying the same process as in the proof of [3, Theorem 5.6] to $1 \le p < \infty$, we can obtain

$$\int_0^1 (1-r)^{\alpha} M_p^p(r,f) \ dr \lesssim \int_0^1 (1-r)^{\alpha+p} M_p^p(r,f') \ dr + |f(0)|^p.$$

Conversely, when $\rho = \frac{1}{2}(1+r)$ we see in the proof of [3, Theorem 5.5]

$$M_p(r, f') \le \frac{M_p(\rho, f)}{\rho^2 - r^2}.$$

If we integrate both sides of this inequality with respect to dr after multiplying them by $(1-r)^{\alpha+p}$, then we obtain

$$\int_0^1 (1-r)^{\alpha+p} M_p^p(r,f') \ dr \lesssim \int_0^1 (1-r)^{\alpha} M_p^p\left(\frac{1+r}{2},f\right) \ dr,$$

whence a change of variable completes the proof.

PROOF OF THEOREM 1. We show that

$$||C_f^0|| \sim (1.1).$$

By (3.1) and (2.3), we have

$$\begin{aligned} ||\mathcal{C}_{f}^{0}|| &= \sup_{\substack{h \in \mathcal{B} \\ ||h||_{\mathcal{B}} \le 1}} \left\{ \int_{U} (1 - |z|)^{\alpha} \Big| (h \circ f)(z) - h(0) \Big|^{p} dx dy \right\}^{1/p} \\ &\sim \sup_{\substack{h \in \mathcal{B} \\ ||h||_{\mathcal{B}} \le 1}} \left\{ \int_{U} (1 - |z|)^{\alpha+p} |(h \circ f)'(z)|^{p} dx dy \right\}^{1/p} \\ &\leq \left\{ \int_{U} (1 - |z|)^{\alpha+p} \Big(f^{\sharp}(z) \Big)^{p} dx dy \right\}^{1/p}. \end{aligned}$$

Conversely, using Minkowski's inequality with those h_j , j = 1, 2, of (2.1) and using (3.1), we obtain

$$\left\{ \int_{U} (1 - |z|)^{\alpha + p} \left(f^{\sharp}(z) \right)^{p} dx dy \right\}^{1/p} \\
\leq \left\{ \int_{U} (1 - |z|)^{\alpha + p} \left(\sum_{j=1}^{2} |(h_{j} \circ f)'(z)| \right)^{p} dx dy \right\}^{1/p} \\
\leq \sum_{j=1}^{2} \left\{ \int_{U} (1 - |z|)^{\alpha + p} |(h_{j} \circ f)'(z)|^{p} dx dy \right\}^{1/p} \\
\leq \sum_{j=1}^{2} \left\{ \int_{U} (1 - |z|)^{\alpha} |(h_{j} \circ f)(z) - h_{j}(0)|^{p} dx dy \right\}^{1/p}.$$

Since

$$\left\{ \int_{U} (1 - |z|)^{\alpha} \left| (h_{j} \circ f)(z) - h_{j}(0) \right|^{p} dx dy \right\}^{1/p} \\
\leq ||h_{j}||_{\mathcal{B}} \sup_{\substack{h \in \mathcal{B} \\ ||h||_{\mathcal{B}} \leq 1}} \left\{ \int_{U} (1 - |z|)^{\alpha} \left| (h \circ f)(z) - h(0) \right|^{p} dx dy \right\}^{1/p}, \quad j = 1, 2,$$

from (3.2) we have

$$\left\{ \int_{U} (1 - |z|)^{\alpha + p} \left(f^{\sharp}(z) \right)^{p} dx dy \right\}^{1/p} \\
\lesssim \sup_{\substack{h \in \mathcal{B} \\ ||h||_{\mathcal{B}} \leq 1}} \left\{ \int_{U} (1 - |z|)^{\alpha} \left| (h \circ f)(z) - h(0) \right|^{p} dx dy \right\}^{1/p} \\
= \sup_{\substack{h \in \mathcal{B} \\ ||h||_{\mathcal{B}} \leq 1}} ||h \circ f - h(0)||_{A^{p,\alpha}} \\
= ||\mathcal{C}_{f}^{0}||.$$

PROOF OF COROLLARY 2. The result follows from \mathcal{M} -invariance of f^{\sharp} and Theorem 1.

4. Limiting case H^p

As is well-known, we may regard $A^{p,-1} = H^p$. Using (2.1), (2.2), (2.3), (2.4) and (2.5), a method similar to Proof of Theorem 1 gives that the the quantity $||\lambda(f)||_p^{1/2}$ is equivalent to the norm of Bloch- H^p pullback operator. This fact will be discussed extensively in the coming paper of the first author.

References

- [1] P. Ahern, On the behavior near a torus of functions holomorphic in the ball, Pacific J. Math. 107 (1983), 267-278.
- [2] P. Ahern and W. Rudin, Bloch functions, BMO, and boundary zeros, Indiana Univ. Math. J. 36 (1987), 131-148.

- [3] P. L. Duren, The theory of H^p functions, Academic Press, INC, New York, 1970.
- [4] T. M. Flett, Mean values of power series, Pacific J. Math. 25 (1968), 463-494.
- [5] J. B. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
- [6] E. G. Kwon, Composition of Blochs with bounded analytic functions, Proc. Amer. Math. Soc. **124-5** (1996), 1473–1480.
- [7] W. Ramey and D. Ullrich, Bounded mean oscillations of Bloch pullbacks, Math. Ann. 291 (1991), 591-606.
- [8] A. Zygmund, Trigonometric series, Cambridge Univ. Press, London, 1959.

Department of Mathematics Education Andong National University Andong 760-749, Korea E-mail: egkwon@andong.ac.kr

leejin@hyowon.pusan.ac.kr