• Title/Summary/Keyword: Compact Operators

Search Result 136, Processing Time 0.022 seconds

SCHATTEN'S THEOREM ON ABSOLUTE SCHUR ALGEBRAS

  • Rakbud, Jitti;Chaisuriya, Pachara
    • Journal of the Korean Mathematical Society
    • /
    • v.45 no.2
    • /
    • pp.313-329
    • /
    • 2008
  • In this paper, we study duality in the absolute Schur algebras that were first introduced in [1] and extended in [5]. This is done in a way analogous to the classical Schatten's Theorem on the Banach space $B(l_2)$ of bounded linear operators on $l_2$ involving the duality relation among the class of compact operators K, the trace class $C_1$ and $B(l_2)$. We also study the reflexivity in such the algebras.

HARMONIC OPERATORS IN $L^p(V N(G))$

  • Lee, Hun Hee
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.25 no.2
    • /
    • pp.319-329
    • /
    • 2012
  • For a norm 1 function ${\sigma}$ in the Fourier-Stieltjes algebra of a locally compact group we define the space of ${\sigma}$-harmonic operators in the non-commutative $L^p$-space associated to the group von Neumann algebra of G. We will investigate some properties of the space and will obtain a precise description of it.

STRICT TOPOLOGIES AND OPERATORS ON SPACES OF VECTOR-VALUED CONTINUOUS FUNCTIONS

  • Nowak, Marian
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.177-190
    • /
    • 2015
  • Let X be a completely regular Hausdorff space, and E and F be Banach spaces. Let $C_{rc}(X,E)$ be the Banach space of all continuous functions $f:X{\rightarrow}E$ such that f(X) is a relatively compact set in E. We establish an integral representation theorem for bounded linear operators $T:C_{rc}(X,E){\rightarrow}F$. We characterize continuous operators from $C_{rc}(X,E)$, provided with the strict topologies ${\beta}_z(X,E)$ ($z={\sigma},{\tau}$) to F, in terms of their representing operator-valued measures.

EXTENDED CESÀRO OPERATORS BETWEEN α-BLOCH SPACES AND QK SPACES

  • Wang, Shunlai;Zhang, Taizhong
    • Communications of the Korean Mathematical Society
    • /
    • v.32 no.3
    • /
    • pp.567-578
    • /
    • 2017
  • Many scholars studied the boundedness of $Ces{\grave{a}}ro$ operators between $Q_K$ spaces and Bloch spaces of holomorphic functions in the unit disc in the complex plane, however, they did not describe the compactness. Let 0 < ${\alpha}$ < $+{\infty}$, K(r) be right continuous nondecreasing functions on (0, $+{\infty}$) and satisfy $${\displaystyle\smashmargin{2}{\int\nolimits_0}^{\frac{1}{e}}}K({\log}{\frac{1}{r}})rdr<+{\infty}$$. Suppose g is a holomorphic function in the unit disk. In this paper, some sufficient and necessary conditions for the extended $Ces{\grave{a}}ro$ operators $T_g$ between ${\alpha}$-Bloch spaces and $Q_K$ spaces in the unit disc to be bounded and compact are obtained.

ON n-TUPLES OF TENSOR PRODUCTS OF p-HYPONORMAL OPERATORS

  • Duggal, B.P.;Jeon, In-Ho
    • The Pure and Applied Mathematics
    • /
    • v.11 no.4
    • /
    • pp.287-292
    • /
    • 2004
  • The operator $A \; {\in} \; L(H_{i})$, the Banach algebra of bounded linear operators on the complex infinite dimensional Hilbert space $\cal H_{i}$, is said to be p-hyponormal if $(A^\ast A)^P \geq (AA^\ast)^p$ for $p\; \in \; (0,1]$. Let (equation omitted) denote the completion of (equation omitted) with respect to some crossnorm. Let $I_{i}$ be the identity operator on $H_{i}$. Letting (equation omitted), where each $A_{i}$ is p-hyponormal, it is proved that the commuting n-tuple T = ($T_1$,..., $T_{n}$) satisfies Bishop's condition ($\beta$) and that if T is Weyl then there exists a non-singular commuting n-tuple S such that T = S + F for some n-tuple F of compact operators.

  • PDF

ON n-*-PARANORMAL OPERATORS

  • Rashid, Mohammad H.M.
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.549-565
    • /
    • 2016
  • A Hilbert space operator $T{\in}{\mathfrak{B}}(\mathfrak{H})$ is said to be n-*-paranormal, $T{\in}C(n)$ for short, if ${\parallel}T^*x{\parallel}^n{\leq}{\parallel}T^nx{\parallel}\;{\parallel}x{\parallel}^{n-1}$ for all $x{\in}{\mathfrak{H}}$. We proved some properties of class C(n) and we proved an asymmetric Putnam-Fuglede theorem for n-*-paranormal. Also, we study some invariants of Weyl type theorems. Moreover, we will prove that a class n-* paranormal operator is finite and it remains invariant under compact perturbation and some orthogonality results will be given.

ESSENTIAL NORMS OF INTEGRAL OPERATORS

  • Mengestie, Tesfa
    • Journal of the Korean Mathematical Society
    • /
    • v.56 no.2
    • /
    • pp.523-537
    • /
    • 2019
  • We estimate the essential norms of Volterra-type integral operators $V_g$ and $I_g$, and multiplication operators $M_g$ with holomorphic symbols g on a large class of generalized Fock spaces on the complex plane ${\mathbb{C}}$. The weights defining these spaces are radial and subjected to a mild smoothness conditions. In addition, we assume that the weights decay faster than the classical Gaussian weight. Our main result estimates the essential norms of $V_g$ in terms of an asymptotic upper bound of a quantity involving the inducing symbol g and the weight function, while the essential norms of $M_g$ and $I_g$ are shown to be comparable to their operator norms. As a means to prove our main results, we first characterized the compact composition operators acting on the spaces which is interest of its own.

ON ESTIMATION OF UNIFORM CONVERGENCE OF ANALYTIC FUNCTIONS BY (p, q)-BERNSTEIN OPERATORS

  • Mursaleen, M.;Khan, Faisal;Saif, Mohd;Khan, Abdul Hakim
    • Korean Journal of Mathematics
    • /
    • v.27 no.2
    • /
    • pp.505-514
    • /
    • 2019
  • In this paper we study the approximation properties of a continuous function by the sequence of (p, q)-Bernstein operators for q > p > 1. We obtain bounds of (p, q)-Bernstein operators. Further we prove that if a continuous function admits an analytic continuation into the disk $\{z:{\mid}z{\mid}{\leq}{\rho}\}$, then $B^n_{p,q}(g;z){\rightarrow}g(z)(n{\rightarrow}{\infty})$ uniformly on any compact set in the given disk $\{z:{\mid}z{\mid}{\leq}{\rho}\}$, ${\rho}>0$.

NORMS FOR COMPACT OPERATORS ON HILBERTIAN OPERATOR SPACES

  • Shin, Dong-Yun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.35 no.2
    • /
    • pp.311-317
    • /
    • 1998
  • For Hilbert spaces H, K, a compact operator T: H $\rightarrow$ K, and column, row, operator Hilbert spaces $H_c,\;K_c,\;H_r,\;K_r,\;H_o, K_o$,we show that ${\parallel}T_{co}{\parallel}_{cb}={\parallel}T_{ro}{\parallel}_{cb}={\parallel}T_{oc}{\parallel}_{cb}={\parallel}T_{or}{\parallel}_{cb}={\parallel}T{\parallel}_4$.

  • PDF

OPERATORS FROM CERTAIN BANACH SPACES TO BANACH SPACES OF COTYPE q ≥ 2

  • Cho, Chong-Man
    • Communications of the Korean Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.53-56
    • /
    • 2002
  • Suppose { $X_{n}$}$_{n=1}$$^{\infty}$ sequence of finite dimensional Banach spaces and suppose that X is either a closed subspace of (equation omitted) or a closed subspace of (equation omitted) with p>2. We show that every bounded linear operator from X to a Banach space Y of cotype q(2$\leq$q〈p) is compact.t.t.