1 |
D. O'Regan and M. Meehan, Existence Theory for Nonlinear Integral and Integrodiffer- ential Equations, Mathematics and its Applications, 445, Kluwer Academic Publishers, Dordrecht, 1998.
|
2 |
J. Pau and J. Pelaez, Embedding theorems and integration operators on Bergman spaces with rapidly decreasing weights, J. Funct. Anal. 259 (2010), no. 10, 2727-2756.
DOI
|
3 |
J. H. Shapiro, The essential norm of a composition operator, Ann. of Math. (2) 125 (1987), no. 2, 375-404.
DOI
|
4 |
A. G. Siskakis, Volterra operators on spaces of analytic functions a survey, in Proceedings of the First Advanced Course in Operator Theory and Complex Analysis, 51-68, Univ. Sevilla Secr. Publ., Seville, 2006.
|
5 |
S. Stevic, Weighted composition operators between Fock-type spaces in CN, Appl. Math. Comput. 215 (2009), no. 7, 2750-2760.
DOI
|
6 |
S.-I. Ueki, Weighted composition operators on some function spaces of entire functions, Bull. Belg. Math. Soc. Simon Stevin 17 (2010), no. 2, 343-353.
DOI
|
7 |
A. Aleman, A class of integral operators on spaces of analytic functions, in Topics in complex analysis and operator theory, 3-30, Univ. Malaga, Malaga, 2007.
|
8 |
B. J. Carswell, B. D. MacCluer, and A. Schuster, Composition operators on the Fock space, Acta Sci. Math. (Szeged) 69 (2003), no. 3-4, 871-887.
|
9 |
S. Chandrasekhar, Radiative Transfer, Oxford University Press, 1950.
|
10 |
O. Constantin, A Volterra-type integration operator on Fock spaces, Proc. Amer. Math. Soc. 140 (2012), no. 12, 4247-4257.
DOI
|
11 |
O. Constantin and J. Pelaez, Integral operators, embedding theorems and a Littlewood- Paley formula on weighted Fock spaces, J. Geom. Anal. 26 (2016), no. 2, 1109-1154.
DOI
|
12 |
C. Corduneanu, Integral Equations and Applications, Cambridge University Press, Cambridge, 1991.
|
13 |
Z. Cuckovic and R. Zhao, Weighted composition operators on the Bergman space, J. London Math. Soc. (2) 70 (2004), no. 2, 499-511.
DOI
|
14 |
J. Rattya, The essential norm of a composition operator mapping into the Qs-space, J. Math. Anal. Appl. 333 (2007), no. 2, 787-797.
DOI
|
15 |
Z. Cuckovic and R. Zhao, Weighted composition operators between different weighted Bergman spaces and different Hardy spaces, Illinois J. Math. 51 (2007), no. 2, 479-498.
DOI
|
16 |
K. Deimling, Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1985.
|
17 |
S. Hu, M. Khavanin, and W. Zhuang, Integral equations arising in the kinetic theory of gases, Appl. Anal. 34 (1989), no. 3-4, 261-266.
DOI
|
18 |
S. Janson, J. Peetre, and R. Rochberg, Hankel forms and the Fock space, Rev. Mat. Iberoamericana 3 (1987), no. 1, 61-138.
|
19 |
T. Mengestie, Volterra type and weighted composition operators on weighted Fock spaces, Integral Equations Operator Theory 76 (2013), no. 1, 81-94.
DOI
|
20 |
T. Mengestie, Product of Volterra type integral and composition operators on weighted Fock spaces, J. Geom. Anal. 24 (2014), no. 2, 740-755.
DOI
|
21 |
T. Mengestie, Carleson type measures for Fock-Sobolev spaces, Complex Anal. Oper. Theory 8 (2014), no. 6, 1225-1256.
DOI
|
22 |
T. Mengestie and S. I. Ueki, Integral, differential and multiplication operators on weighted Fock spaces, Integral, differential and multiplication operators on weighted Fock spaces, Complex Anal. Oper. Theory. DOI: 10.1007/s11785-018-0820-7.
DOI
|