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SCHATTEN’S THEOREM ON ABSOLUTE SCHUR
ALGEBRAS

JITTI RAKBUD AND PACHARA CHAISURIYA

ABSTRACT. In this paper, we study duality in the absolute Schur algebras
that were first introduced in [1] and extended in [5]. This is done in a way
analogous to the classical Schatten’s Theorem on the Banach space B(l2)
of bounded linear operators on I involving the duality relation among
the class of compact operators I, the trace class Cy and B(lp). We also
study the reflexivity in such the algebras.

1. Introduction and preliminaries

Let A and ¥ be sequence spaces in {co} U{l, : 1 < p < oo}. For any infinite
matrix A with entries from the complex field C, we define the non-negative
extended real number [|A[|, & to be the norm of the matrix transformation
defined by A if it belongs to B(A,X) (the Banach space of all bounded linear
transformations from A to X), and to be oo otherwise. Let B be a Banach
algebra with identity e; and let M(B) be the linear space of all infinite matrices
with entries from B. For any matrix 4 = [a, ] € M(B) and 1 < r < oo, the
absolute Schur rth-power of A is the scalar matrix A"l := [||a;||"]. For any
two matrices A = [a,, ] and B = [b,,] in M(B), the Schur product of A and
B is the matrix Ae B := [a,,b,, |, where the multiplication of the entries is the
multiplication of elements in B.

In [5], J. Rakbud and P. Chaisuriya proved that the set

Si 5 (B) = {A € M(B) : HAW < oo}
is a Banach algebra under the Schur-product multiplication and the norm
Al s, = HA[’"]H:[L\/;. For each r > 1, S} (B) is called an absolute Schur

r-algebra. The following preliminary results have been stated and proved in

[5].
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Lemma 1.1. Let A = [ajk], B = [b].k] be scalar matrices. 1f |a, | <b,, for
all j’k? then ”A”A,E S ”A{l]”A,g S ”B”A,E'

Theorem 1.2 (Holder-type inequality). Let A,B € M(B). Then

1/r*

Ao B0, 5 < AR5 1B

forl<r< oo and%—l—r%:l.
Lemma 1.3. For any A = [aj] € M(CQ), laje| < ||Ally 5 for all j,k.
The following proposition is an extension of Proposition 2.8 in [5].
Proposition 1.4. (1) For 1 < v < r < oo, S}{',E(B) C S§; x=(B) and
14lls 5, < l1Allp 5 for oll A €S 5(B).
(2) If (A, Z) # (l1, o), then S} 5(B) G Sk 5(B) for all 1 < 7' <7 < o0.
(3) The normed spaces ( 1 co By 11l o, 1) and (Sl’"1 CO(B),H-HZMCO’T) co-

incide for all v > 1, and for any A = [ax] € S}, ., (B), 1Al coq =
sup [la;il|-
ik

Proof. Let A = [ajx] be a non-zero matrix in S}{”E(B). From Lemma 1.3,
we have that [lac|| < ||All; 5, for all (j,k). Hence ﬁ;—"i—l—, < 1 for all

(4,k). So for each (j,k), we get that (NJIT,];’CJ ’) < (ﬁf;”_,)r’ that is

llajell” < 11AlY s, " llajll”. Thus by Lemma 1.1, we obtain that

40 < [ (4], = N4

This implies that |[A]ly x, < ||Ally 5., s0 A € S§(B). It follows that
Sis(B) C S;5(B). Next, we will show that S} . (B) = Sy, . (B) for all

Al

AT

ll cp

r > 1.We have from the above argument that S}, . (B) C &, ., (B). To see that
Sy co(B) C 8l o (B), let A =[ax] € S ., (B) and let £ = {&}32, € li. For

l1,e0

each j, we have by Hoélder’s inequality that

D llagullléel =3 llagll 1™ I& 1
k=1

k=1

oo 1/7 1 oo 1/r
{Z ol lakl] {leu]
k=1 k=1

PN 1/r
[Z llajll” lfkl] NIl
k=1

*

IA
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00 oo
where 1 + L = 1. This implies that the sequence {Z el fk} belongs
k=1 j=1
to co. If ||z|| < 1, we see that

sup | > llagell & | < 1Al o0 -
I k=1
It follows that [|Al];, ., ; <Al ¢ 50 A € S} . (B). Therefore, Sj, , (B) =
S, ., (B) and H'||l1,c0,r = |l c0,1- Let A =[aji] € 5111760(3). We will show that

Al con = su£||ajk||. By Lemma 1.3, we have that ||A|l, . , > su,?||ajk||.
7 3
For any = = {& 1}, € l; with ||z]| < 1, we get that

Z llajell

k=1

sup
J

< sup oz [Zlm} < sup oz

k=1

This implies that ||4]|,, ., ; < sup llajk||. Hence [|All;,, ... = sglf)Haij-
J

For the case where (A,Y) 7& (ll,Co) the following examplés show that the
inclusions are proper. Let p > 1 and 1 <7’ <r.

(L S};:lp( ) # 83, (B). The matrix A with the first column the se-
quence { / or') e} and all other columns 0, is in S} ; (B) but not
(B

in Sy, (B).
(2) CO,CO( ) # S CO( ). The matrix A with the first row the sequence
{ } and all other rows 0, is in 87, . (B) but not in Sgo e (B)-

(3) SMO( ) # 8] o, (B) for p # 1. The matrix A with the first row the
1 \ Ve 1 .
sequence (k_+1) e ?, where st = 1, and all other rows 0, is

in & . (B) but not in Sf;,co (B).

The proof is complete. O

2. Duality of absolute Schur algebras

From the results in [1], L. Livshits, S.-C. Ong and S.-W. Wang studied in
[3] duality in the absolute Schur algebras Sy, ;,(C) by a way analogous to the
classical Schatten Theorem on B(l3). In this section, we extend the results in
[3] to our more general setting.

Let AS be the linear space of all infinite matrices A = [a;i] over the complex

field C such that 22|ajk| < 00. Since this is the space [;(N x N) it is a
j=1k=1
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o o0

Banach space under the norm ||[a;i]|| 45 = ZZ]a,ﬂ. For 1 <r < oo, we let
j=1k=1

M (S} £(B), AS) = {[wjr] : ox € B, [0 (aji)] € AS ¥ [au] € S; 2(B)} .
For each @ = [p;i] € M (S}, 5(B), AS), we define a map - Sis(B) = AS
by

®(A) = [pjr(a;r)] for all A= [a;i] € S =(B).

Proposition 2.1. For any ® € M (SX,E(B),AS), ® is a bounded linear op-
erator.

Proof. The linearity of ® is obvious. To show & is bounded, suppose that
An = [a;z)] — A= [ajk] in S/T\,E (B) and [(P]k ( (n))] = Q(An) — B = [b]k]
in AS. By Lemma 1.3, we have for any (4, k) that

H G — a]k” <[|4n —Allp 5, foralln.

So ‘15':) — ajr a8 n — oo for all (j,k). From this, we get for all (j,k)
by the continuity of ¢;; that ¢j (ag’,:)) — @jiajr) as n — oo . Since

®(A,) — B as n —» oo and for each (4, k),
ik (ag.',?) —bjg| < ”:I;(An) - B”As for all n,

ik (agz)) — bjx as n —» co. Hence ®(A) = B. Since both St 5(B) and AS
are Banach spaces by the Closed Graph Theorem & is bounded. O

For each b € B and (j,k) € N x N, let A((j, k);b) be the matrix whose (4, k)
entry is b and all other entries 0. For each positive integer n and A € M(B), let
A, be the matrix which agrees with A on the upper left n x n block and is 0
on all other entries and let 4,,, = A— A4,,,. For each z € C, we let sgn(z) = lzil

if z# 0 and sgn(z) =1if 2 = 0.

Proposition 2.2. The linear space M (S]{,E (B), AS) equipped with the norm
defined by ”(I)HM(S}; 5(B),AS) = H;I;” is a Banach space.

Proof. First, we will show that ”'”M(S; +(B),As) 1S anorm on M (81 =(B), AS).
Clearly, for any ® and &, in M (S}, 5 (B), AS) and any scalar a, (@/4—30) =
@ + o and (a®) = ad. Hence @ + Dol q(s; | (5y.as) < I®llag(sy 5).48) +

“‘I)OHM(S 5(B),AS) and “aq)HM(y (B), AS) larf H(I’HM(ST (B),AS)" Suppose
that ® = [p;x] € M (S} (B), AS) and that “‘I)”M(ST (8),.45) = 0- Then

H(I) ” = 0 for all A € Sf y,(B). Hence, for each (j,k) € Nx N, we get
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that @ ()] = H@ (A((4, k); b))HAS =0forallbe B, so ® = [pi] is the zero

matrix. Thus M (S}, 5(B), AS) equipped with the norm ||-||M($T 5), AS) is a

normed space. To show that it is a Banach space, let { [cpgz) ]} be
n=1

a Cauchy sequence in M (S} ;(B), AS). Since for each (j, k) and b € B with
lloll <1, [JA((5, k)3 D)l 5. < 1, for any fixed (j, k), we have for arbitrary b € B
with [|b]] < 1 that

\(cpgz)—wﬂ")) (b)‘ = ‘

@, = & (AL,

IN

e

“@n - (bmHM(sx,g(B),As) fOI' all n,m.

This gives Hcp(k — | <190 = Brnll g, y.05) for all . This impies
that { (n )} __isa Cauchy sequence in B~ for all (j, k). Thus, by the complete-

ness of B*, we get for each (j, k) that there is @5 in B* such that <P§'Z) — Vjk
as n — oo. Put & = [p;]. We will show that & € M (S »(B), AS) and
®n — @ as n — oo. To see that & € M (S} 5 (B), AS), let A = [a] €
St 5(B). Since {®,}° ;| is a Cauchy sequence, there exists a positive integer
M such that H@TL(A)

s < M for all n. So, for any positive integers J and K,

J K J K
ZZ"Pik(a]k ZZ H%k - %k” lajel| + M for all n.

j=lk=1 j=1lk=1

Hence, by taking the limit as n — oo, we get for all J, K > 1 that

oY lesklag)| < M.

j=1lk=1
Since J and K are arbitrary, we have that
oo oo
DD lekla)l < M.
J=1k=1

Therefore ® € M (S} »(B), AS). Now, for the convergence, we reason as
follows. Let € > 0 be given. Since {®,}° ; is a Cauchy sequence, there exists
a positive integer N such that

H(Pn - (Pm“M(SX’E(B),AS) < % for all n,m Z N.
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Let A = [a;i] € S} 5(B) with ||A|ly 5z, < 1. Then we get for each pair of
positive integers J and K that

>y

j=1lk=1

%k)(%k ‘ng) ajk){ < % for all n,m > N.

By taking the limit as m — oo, we have for each n > N that

>

<p]k (ajr) — gojk(ajk)' < £ for all JK>1

j=1k=1 2
This implies that
&, — 3 H z—;; ‘go (ajr) @jk(ajk)’ < % for alln > N.
It follows that ||®,, — (I)HM(SX,E(B),AS) < §<eforalln > N, thatis &, — &
as n — oo. The proof is complete. d

For @ = [p;x] € M (S} 5(B), AS), we define a map  : Sis(B) = Chby

= ZZQ&jk(ajk) forall A = [ajk] S SX,E(B)'

j=1lk=1

Since the series on the right-hand side is absolutely convergent,

8(4)] < Zzlw,k(am-“@ oo S 1@Nan(sg wras)

j=1lk=1

*

for all A = [aji] € 8 5(B) with [|4]|, 5, < 1. It follows that & € (S} 5(B))
and 8[| <19l uys; ,my,05) Let

M (85 5(B), AS) = {5 (de M (SXYE(B),AS)}.
Proposition 2.3. For any & € M (S} 5,(B), AS), H@” = 119l (sp 5 8),45)-

Proof. Let ® = [p;] € M (5} 5(B), AS) and let A = [a;] € Sk »(B) with
lAlls,5,» < 1. Put C = [sgn(pjk(ajk))ajs]. Then |Cl 5, = |4l x, < 1and

[8],. = S el

j=lk=1

= D) (senlpik(ain)))pinase)

j=1k=1

- 0) < “5“
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Hence ”‘I’HM(S;‘,S(B),AS) < H@H O

Corollary 2.4. M (S};’Z (B), AS) is a closed subspace of (87\,2(3))*'

Proof. Since M (SX’E(B), AS) is a Banach space, it follows immediately, from
the above proposition, that M (83 5(B), AS) is a complete subspace of
(S5.5(B))7, so it is closed. O

Let My be the linear space of all infinite matrices over B having finitely
many nonzero entries. For any 1 < r < o0, let K} 5(B) be the closure of Mo
in S =(B).

For any ¥ € (IC}"\,E(B))*, we define for each (j,k) € N x N a map ¢;z on B
as follows
0 (®) = U (A((j,k);b)) for all b € B.
It is easy to see that ¢;; € B* for all (4, k). Let @y = [@;i]-

Proposition 2.5. For any ¥ € ( 7\72(8))*,
By € M (S} 5(B), AS) 1®wll vq(sy o 5),45) < NI and ¥ = u | ) -

Proof. We will first show that ®¢ € M (8} 5(B), AS). Let A = [a;] €
Sie(B). Put € = [sgn(pjr(aje))ae]. Then ||C|l, 5, = [|A[ly5,. For each
(7, %), it is easy to see that W (A((j, k); sgn(ejz(ak))a;k)) = sk (ar)]. So, for
each positive integer n,

n

DD lemlap)l = DY WA, k); senlese (ajn))azm)

J=Th=1 j=lk=1
= ¥(Ch))
< G, Iy s,
< Iy 5., (by Lemma 1.1)
= Al s, -

Thus
S5 leslam)] < N Al 5, < oo
j=1k=1
So &g € M (S};’E(B),AS), and we also get that H‘I)‘I’“M(sgjg(ts),As) < [|F).

If A = [ajx] € Mo, then there exists a positive integer n such that A = A4, .
Thus

V(A) =D D W(AGk)an) = > pirlaze) = Pu(A4).

J=1k=1 j=1lk=1
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Since ¥ and ®g k7, . (B) are continuous, by the definition of K} 5(B), we obtain
that ¥ = (f\; |K2,E(B). O

Theorem 2.6. ( R,E(B))* is isometrically isomorphic to M (S 5(B), AS).

Proof. We will show that the map I"' : ¥ — &g is an isometric isomorphism
between (K7 (B))" and M (S} 5,(B), AS). Clearly, T is linear. For any ® €

M (SX,E(B),AS), we have that T ($|’CR 2(3)) = &. Hence T is surjective. By
Proposition 2.3 and Proposition 2.5, we get that

120 (s omr,a5) < 121 = || Belics om]| < || @9]) = 190lpnsy yiyoas)
Thus ||¥|| = ”(I)‘I'”M(SX,E(B),AS)' Therefore, T' is an isometric isomorphism
between (K} 5(B))" and M (S} 5(B), AS). O

Lemma 2.7. For any A,B € S} 5(B), i

some R > 0, then
(av1 - B) g

Proof. For any z,y > 0 and r > 1, we have that

2" —y"| < rle —yl(e" 7 + 7).
Suppose that A = [a;x] and B = [bjx]. Then by the above fact, we have for
each (j,k) that

-1 -1
llasill™ = 56l 1 < rlllagull = zal1] (llasll™ + Isel ™)

<Rand Bl 5, <R for

<2r
AT

IA

-1 ~1
rllaze = bell (llazell”™ + lesl™™)

If » = 1, the inequality clearly holds by Lemma 1.1. We now assume that
r > 1. Let r* be the exponent conjugate to r. Then by Lemma 1.1 and the
Holder-type inequality, we get that

| =B <A By e (a4 B

rllA= Blly g, AT+ BUH]| o
rll4=Bllyz, (|47 g0 + 1B7 a5, )
rlia= Bl s, (4705 +1B75)

rllA = Bl s, (14175, +IBIYE,)

rll4 = Blly s, (14153, + B3,
2R || A~ By,

INIA

I A

IA
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The proof is complete. O

Proposition 2.8. For any r > 1, the map A — Al") from S} 5,(B) to S} (C)
s continuous.

Proof. Suppose that 4, — A in SIT\’E(B). Then there exists a positive integer

M such that || A, 5, < M and [|4,]|y 5, < M for all n. So, by the previous
lemma, we have that

i -
A

. <2rM A, ~ Ally g, — 0as n — oo
Hence the map A — Al"l is continuous. l

Let C§ 5;(B) be the set of matrices A € M(B) such that the linear transfor-
mation (from A to ¥) defined by A is compact.

Corollary 2.9. For anyr > 1, K} »(B) C C} 5(B).

Proof. If A € K} 5(B), then there exists a sequence {A,}32, in My such that

Apn — Ain S} 5(B). Hence, by the above proposition and Lemma 1.1, we get
that

—» Q0 asn — oo.
AD,

Since A,, € C} (B) for all n, 4 € C} (B). O
Corollary 2.10. If A C %, then K} »(B) ¢ S} =(B)-

Proof. If A C X, the matrix A with the entries in the main diagonal are the
identity e of B and all other entries 0, is in S} (B) but not in C} +~(8). Hence,
by Corollary 2.9, A ¢ K} «(B). a

Theorem 2.11. (1) If My is dense in S} 5 (B), then

M (8} 2(B), AS) = (Si =(B))".

If K} 5(B) & S =(B), we have that the annihilator (ICIT\,E(B))J' of K} 5(B) is

a non-trivial closed subspace of (SX’E(B))* and (S&E(B))*, can be expressed

as the non-trivial direct sum (S,T\,E(B))’k =M (Sx.=(B), AS) & (ICKE(B))J'
(2) Suppose that K} 5(B) & S; w(B) and S} (B) satisfies the following

property: for every A € S} «(B), ”A”A,E,r = max{||AnJ||A’Evr , HAnr”A,z:,r} for

alln € N. Then, for any ¥ € (S]\,E(B))*, the decomposition ¥ = X+ ¢, where

v L .
A€ M (S} 5(B), AS) and ¢ € (K} o(B))™, satisfies ||| = [IA]| + [|$]l-

-

< HA[J} — Al
AE T

Proof. (1) For any ¥ € (SX’E(B))*, let Qg = ¥ — &g. Then ¥ = &y + Oy,
and by Proposition 2.5, we have that Qg € (ICR’E(B))J'. Hence (S} 5(B))" =
M (85 5(B), AS)+ (K} =(B)) ™. If Mo is dense in 8§ 5, (B), then (K} 5(B))™ =
(Sh=(B)" = {0}. So (S} 5(B))" = M (S} 5(B), AS). Suppose that K} (B)



322 JITTI RAKBUD AND PACHARA CHAISURIYA

G Si x(B). Then, by the Hahn-Banach Extension Theorem, (ICK’E(B))J' is a

non-trivial closed subspace of (SX’E(B))*. Assume that & € M (S}, 5(B), AS)

and ® € (IC}"LE(B))L. For any A € S} 5(B), we have that nlgr;()@(AnJ) = $(A).

Hence, by the assumption, we get that EI;(A) =0 forall A € S} 5(B). By Corol-

lary 2.4, we have that M (S} 5(B),.AS) is a closed subspace of (S} 5(B))".
=~ L

Therefore (S} 5(B))” = M (S} 5 (B), AS) & (K}, 5(B))

(2) From the proof of (1), A = &g and ¢ = Qg. Suppose that ||¥| <
“&H + ||Qg]|. Then there exists an A € S} 5(B) such that [|Al[ 5, <1

and ||¥] < '(ﬂ,(A)' + ||Q||. From this, we get that there is positive inte-

ger ng such that || ¥ < |¥ (4, )| + |Q]l. Put C = sgn (¥ (An,,)) An,, -

Then IClly 5, = ||Ano, HA’EW < 1 and ¥(C) = |¥(Ay,,)|- Choose B €

Six(B) so that Bl 5, < 1 and [|¥|| < ¥(C) + [Q¢(B)|. Then there ex-

ists a positive integer n; > ng such that |¥|| < ¥(C) + "If (er)’. Let

D = sgn (¥ (er)) B, . Then ||D|, 5, = NBnlr L <land ¥(D) =

’\IJ (Bnlr)’. It follows that ||¥|| < ¥(C + D). By the assumption, we have

that [|C + D, 5, = max {||0||A,E,T , ||D||A72’T} < 1. So we get a contradic-
. O

tion, therefore ||¥|| = Hﬂ“ + ||Qg|

Example 2.12. If (A, X) is either (I2,12) or (I1, co)}, by Corollary 2.10, we ob-
tain that K} »(B) & S} x(B). From Proposition 1.4(3), we have that 7, . (B)
satisfies the property given in (2) of the above theorem. For S, ;,(B), that
property is inherited from B{ls,15).

3. Preduality

In this section, we investigate the preduality of S & (B).
For ¢ € B* and & € M (S} 5(B), AS), let A((j,k);p) and ®,, be the
matrices having the same meaning as the corresponding ones defined over B.

Theorem 3.1. Sllhco(B) can not be the dual space of a normed space.

Proof. Let A = [aj] € S}, ,,(B) with ||A]l,, .., = 1. Tt is easy to see that
z = {a;1}32, belongs to the closed unit ball of the Banach space co(B) of all
sequences in B converging to 0. It is well-known that the closed unit ball of
co(B) has no extreme points. Hence there exists 0 < a < 1, and y = {y;}%2,
and z = {2;}32, in the closed unit ball of co(B) such that x # y, z # 2 and
z = ay + (1 —a)z. Let B and C be matrices obtained by replacing in the
first column of the matrix A with the sequences y and z respectively. Then
A# B, A#Cand A=aB+(1—a)C, and by Proposition 1.4(3), we see that
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1Bl co1 < 1 and [Cl;, o1 < 1. So A is not an extreme point of the closed

unit ball of S, . (B). Thus the closed unit ball of S} . (B) has no extreme

points. If Sll1 o (B) was isometrically isomorphic to the dual space of a normed
space, by Alaoglu’s Theorem and Krine Milman’s Theorem, the closed unit

ball of 3111,c0 (B) would have to contain at least one extreme point. This is a

contradiction. O

The following lemma is inherited from B(A, X).
Lemma 3.2. (1) If A€ S} 5(B), then |[An x5, /7 14llz 5,
(2) If the set {||Am “A,l,,,r :n=1,23,.. } is bounded, then A € S} | (B).

Remark 3.3. The assertion (2) is not generally true for the case £ = ¢q, for
example, the matrix A whose the entries in the first column are e and all other
entries 0 does not belong to S . (B), but ||A, ||, ., . =1 for all n.

Let VO(S};’E(B),AS) be the closure, in M (SX’E(B)“AS), of the set of
matrices over B* having finitely many nonzero entries.

Proposition 3.4. & € M, (SX‘E(B),AS) if and only if

|®,, — q)HM(SK’E(B),AS) — 0 as n — oc.

Proof. Suppose that & € M, (S};’E(B),AS). Let € > 0. Then there exists a
matrix ®' over B* having finitely many nonzero entries such that
, €
12" = ®ll (7 p(5),48) < 5

Let N be a positive integer such that &' = @) . Then, for n > N, -9, =
(®' — ®),,. Thusif n > N, we get that

@5, — ‘I)”M(SX’E(B),AS)
<||®' - @l sy pimyas) 12 = Rllpg(sy p(8).45)
= [|(®' - ‘I’)nJHM(sg,E(B),AS) +]19' - ‘I)HM(SX,E(B),AS)
<29 - (I>||M(SR)2(B),AS) < €.
The converse is obvious. The proof is complete. O
For A € S 5,(B), we define a linear map A4 : Mo (S 5(B), AS) — C by
Aa(®) = B(4) for all & € M (Sh 5(B), AS) .
It is clear that A4 € Mo (S} 5(B), AS)" and |[Aall < ||l 5.,

Proposition 3.5. For any A € S »(B), ||Ally 5, = |IAall-
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Proof. Let A € S} 5 (B). Then by the Hahn-Banach Extension Theorem and
Theorem 2.11, we get for every n that

Moz =5up{1%(40,)] ¥ € (SF5(B))", 1| < 1}

=sup {|8a(4.)|: ¥ € (S5.8)", Iwl < 1}

=sup {|8(4,,)|: € M (S} 5(B), A45) 8l pa(s5 . y05) < 1]
B (4)] @ € M (S 5(B), AS) 18l p1(5p L sy,5) < 1}

=sup {[Aa(@n)] : @ € M (S5 2(B), AS) , 18]l yy(5; L 5y.4) < 1)
<lAall-

Hence, by the above lemma, we get that [|A||, 5, = [|A4ll. O

I /\

=sup{

Proposition 3.6. If the map A — A4 from S} =(B) to (Mo (S};’E(B),AS))*
is onto, then B is reflexive.

Proof. Let g € B**. Put ¥,(®) = g(p11) for all @ = [p;x] € Mo (S 5(B), AS).
Then ¥, € (Mo (S5 5(B), AS))". So, by the assumption, we get that there
exists A = [ajx] € S} (B) such that Ay = ¥,. Hence p(a;1)=A4(A((1,1);¢))
=T, (A((1,1);9)) = g(<p) for all ¢ € B*. Tt follows that B is reflexive. O

From the above proposition, we have that the reflexivity of B is a necessary
condition for the map A — A4 to be onto. For the case of & = lp, we also have
it is sufficient.

Theorem 3.7. The map A — A4 is an isometric isomorphism from Siu, (B)

onto (.Mo (SA,lP( ),AS)) if and only if B is reflexive.

Proof. Suppose that B is reflexive. We will show that the map A — A4 is
onto. Let Sy = {/\A A e sy, (B), “A”A,lp,r < 1} and S be the closed unit

ball of (Vo (SXJP (B),AS))*. It is clear that Sy C S. Let o be the weak*
topology on (ﬂ_o (SXJP (B), AS)) *. Now, we want to show that S is closed in
((WO (S/’{’,p (B),AS))* ,a). To see this, let {A4, }o, where A, = [ (o‘)] be
a Cauchy net in ((Vo (SX),F (B), AS))* ,cr) which is contained in Sp. Then
{Aa, (®)}, is a Cauchy net in C for all & € Mg (8;,,’, (B),AS). From this,
we get for each (j,k) € N x N that {cp (ag.‘,’:)) }a is a Cauchy net in C for all
@ € B*. This implies that {ag.‘,:)}a is a Cauchy net in B equipped with the
weak topology, for all (j,k). It is easy to see that for each (j, k), { ag.:)}a is
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contained in the closed unit ball of B. Hence, by reflexivity of B, we get for
each (j,k) that there exists an aj; in B such that w — lim, ag'z) = ajr. Put
A = [a;i], we will show that lAlla,, » < 1 and w* —lima Aa, = Aa. Let

® = [(p]‘k] € M—O(S};,lp (B),AS) Then ;s ( gk)) — cpjk(ajk) for all (3, k).
For each n € N, we have that

Ao, (B) = Aa, (@) <> '%’k (aﬁ)) - %k(ajk)‘ for all a.

j=1k=1

Thus A(4,),,(®) — A4, (®) for all n. This implies that w* —lima A(a,),, =
Aa,, and HAm”A,lp,r = H)\AM H < 1for all n . So, by Lemma 3.2, we obtain
that ||Ally, . < 1. To see that w* —limaAs, = Aa, let € > 0 and & €

M, (Sx,zp (B), AS). Then there exists v such that

| A4, (@) — A, (R)] < & for all a,8 = 7.

Since ||®,, — (I)”M(SX,ZP (8),45) — 0 as n —» oo. There exists a positive
integer N such that [|®,, — <I>||M(

n> N and a,8 = v,
IMAwa, (B) = Mgy, (B)] = | = i) (B0)
< |(>\Aa —A4,)(Rn, = @)+ |(Aaa = X4, )(D)]
< Aan = Aas | 120, — @l

S,K,,p(B),AS> < g for all n > N. So, for every

€
M(83.,,(8).45) T 4

€ € €
< HAa - Aﬁ”A,lp,r g + 1 < 5

Taking limit in 5 we have for each a = ~ that

Aaa)n (@) — A4, (@) < § for all n > N.

Hence, by taking the limit as n — o0, we get that
A4, (@) = Xa(®)| < 5 <e for all a=1.

Therefore w* — limy Ag, = Aa. It follows that Sy is a complete subset of
(" (S,(’ZP(B),AS)Y 0), 50 it is closed in (Mo (S};JP(B),AS))*,G).
If there exists Q € S\ Sp, then by Theorem V.2.10 in [2], there exist constants
cand € >0, and ® € Mg (SXJP(B),AS) such that Re (M a(®)) <c—-e<ec<
Re(Q(®)) for all A € SF, (B) with [[A]l,, . < 1. For A€ Sy, (B), we let

A = sgn (Aa(®)) A, it is obvious that HAH ||A|IAJP,T. From this, we

Alp,r
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obtain that
”‘I’“M(sx,l,,w),AS) - HE’”
= sup{|&(4)]: A €57, (B), 4l <1}
= sup {|Aa(@)]: A € 55, (B), IAlly,, - <1}

= sup {,\Z(Q):AES};,, (B), | 4lla, » < 1}

c—€<c<Re(UD)).
Since Q € &, by Hahn-Banach Extension Theorem, we have that
Re((2)) < 1Q(®)] < sup|¥(®)] = H‘PHM(

vesS

IN

Sg’,p(B),AS) :

So we get a contradiction, therefore So = S. This implies that the map A — A4
is onto. U

Remark 3.8. In (3], the duality of S, ; (C) was studied. We summarize some
results as follows.

Let M" denote the linear space of all matrices B € M(C) such that AeB ¢
AS for all A € S ;. (C). For any B € M, the linear map ¥p : S, o (O =
AS defined by B + A e B is bounded. Define the norm ||-|| . on M" by

1Bl pr = 1 TB)l. Let oM™ = {60 Up : B € M}, where o([bjx]) ZZka
j=1lk=1
for all [bjx] € AS.

(1) K, 1,(©) =€, 1, (O

(2) M" equipped with the norm [|-|| ., is a Banach space.
(3) ( R ((C)) is isometrically isomorphic to M".

L *
(4) (/C{;J . ((C)) is a non-trivial closed subspace of (8{’2,22 ((C)) , and
T * r r L

(Slz,lz(c)) =oM" & (Klz,la((c))

(5) For any ¢ € (312,12 ((C))*, the decomposition ¢ = 1 + A, where ¢ €
L
oM™ and X € (/C;M«C)) , satisfies [l = |l + IAI-

(6) (M7)" is isometrically isomorphic to Sf, | (C).

It is easy to see that M (S[ 1,(0), AS ) and M" are isometrically isomor-
phic. It was also shown in [3] that M, ( 112 (O AS) M (S’" ((C),AS).

I,z
So our results generalize the results in [3].



SCHATTEN’S THEOREM ON ABSOLUTE SCHUR ALGEBRAS 327

4, Reflexivity

We now investigate the reflexivity of S} »(8) and K} «(B).
For A € S} 5,(B), we have that the linear functional X4 on M (85 5(0), AS)
defined by A + ®(A) is also bounded and HXA H < J|4lly 5, Obviously,

Aa(®) = Aa(®) for all @ € My (S} £(0), AS).

Lemma 4.1. For any A € S} »(B), HXA"‘

7 Pl
Proof. Let A = [aj] € S} 5(B) and let @ = [pjx] € M (S} 5(B), AS) with
“q)HM(SgE(B),AS) < 1. Put ® = [sgn(pjr(ajk))eix]. It is clear that &' €

M (85,5(B), AS) and [[@'l| pysy _(m),48) = 1®¥llaa(sy p8),.a5) S 1+ For each
n € N, we have that

BAn)| < 3l a)
j=1lk=1
n+ln+1 o
< Y senlealanem(an) (= ¥ (An)))
j=1lk=1
< S smnlenla)enlan) (=)
J=1k=1
It follows that HXAM H < HXA,% ‘ < HXAH for all n. Hence HX“‘M ‘ Vs
sup \XAM ‘ and sup ’XAM H < ‘XAH Let ¢ > 0. Then there exists ® €

M (S5 5(B), AS) such that [|®]] (s ) 4s) < 1 and HXAH < ‘@(A)‘ +e
From this, we get that there exists a positive integer ng such that

HXAH < ’5(,4”%) te
< HXAnoJ ‘ + €
< sup ’XAM ‘-{—e.
n
Since € is arbitrary, W H < sup ‘X A, ‘ The proof is complete. O
: n

Proposition 4.2. For any A € S} 5(B), |[4lly 5, = HXAH
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Proof. By the above lemma and Lemma 3.2(1), it is sufficient to show that
Al 5, = ”XA“ for all A € Mo. To this end, let A € M. Then by Hahn-
Banach Extension Theorem and Theorem 2.11, we get that

14z, = sup{{T(4)|: ¥ € (S}5(B)", || < 1}
= sup {|®e|: ¥ € (S5:(8))" 1% < 1}
= sup {|B(4)| : & € M (S} 5(B), AS) 19 pu(s; _sy.a5) < 1}
- -
The proof is complete. O

From the above proposition, we have that the map R sending A4 to X4 is
an isometric isomorphism from {\4 : 4 € S} 5(B)} into (M (S} 5(B), AS))".

Proposition 4.3. We denote the isometric isomorphisms A +— Aa from
S 5(B) into (Mg (SX’E(B),AS))* and U — dy from (IC}"\’E(B))* onto
M (S5 =(B), AS) by T and W respectively. Let Q : K} 5:(B) — (Ki 5(B))™
be the natural map. Then W*RT(A) = Q(A) for all A € KA 5(B), where W*
is the adjoint of W.

Proof. Let A = [a;z] € Mp. Then there is a positive integer n such that

*

A, = A. Tt is easy to see that W*RT(A) = )\AW Let ¥ e (IC}"\ =(B))".

Then AW (¥) = A4(W(¥)) = X4 (Bg) = ZZ\P k);a;r)) =
L=

V(A) = Q(A)(¥). So W*RT(A) = Q(A) for all A EJMO.ISince My is dense

in K3 5(B), W*RT = Q on K} 5,(B). O

Corollary 4.4. (1) If either K} x(B) ¢ Sj 5(B) or WO(S};JP(B),AS) ¢
M (8., (B), AS), then both Ky 5 (B) and S} y,(B) are not refleaive.

(2) § Al (B) is reflexive if and only if B is reflexive, Mgy (SM (B ),AS) =
M (s;;y,p( ),AS) and K3, (B) = 84, (B).
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