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ON n-∗-PARANORMAL OPERATORS

Mohammad H. M. Rashid

Abstract. A Hilbert space operator T ∈ B(H ) is said to be n-∗-

paranormal, T ∈ C(n) for short, if ‖T ∗x‖n ≤ ‖Tnx‖ ‖x‖n−1 for all
x ∈ H . We proved some properties of class C(n) and we proved an
asymmetric Putnam-Fuglede theorem for n-∗-paranormal. Also, we study
some invariants of Weyl type theorems. Moreover, we will prove that a
class n-∗ paranormal operator is finite and it remains invariant under
compact perturbation and some orthogonality results will be given.

1. Introduction

Throughout this paper let H be a separable complex Hilbert space with
inner product 〈·, ·〉. Let B(H ) denote the C∗-algebra of all bounded linear
operators on H . If T ∈ B(H ) we shall write ker(T ) and TH for the null
space and range of T . Also, let σ(T ), σa(T ), σr(T ) and σp(T ) denote the
spectrum, approximate point spectrum, the residual spectrum and the point
spectrum of T .

An operator is called ∗-paranormal if ‖T ∗x‖2 ≤
∥∥T 2x

∥∥ for all unit vector x ∈
H . In order to discuss the relations between ∗-paranormal and p-hyponormal
and log-hyponormal operators, Duggal, Jean and Kim [17], introduced ∗-classA
operators defined by |T 2| ≥ |T ∗|, and they showed that ∗-class A is a subclass
of ∗-paranormal and contains p-hyponormal and log-hyponormal operators.
Another generalization of hyponormal operators are n-∗-paranormal operator.
An operator T ∈ B(H ) is n-∗-paranormal if ‖T ∗x‖n ≤ ‖T nx‖ for each unit
vector x. Moreover, by n-paranormal operator we mean an operator T ∈
B(H ) which satisfies ‖Tx‖n ≤ ‖T nx‖ for each unit vector x. For n = 2,
n-paranormal and n-∗-paranormal operators are simply called paranormal and
∗-paranormal operators, respectively.

The inclusion relations between the above mentioned classes of operators are
shown below (see [7, 13, 14, 29]).

hyponormal⊂∗-class A⊂∗-paranormal⊂n-∗-paranormal⊂n+ 1-paranormal
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and hyponormal ⊂ paranormal ⊂ n+ 1-paranormal.
The organization of the paper is as follows. We introduce our notation and

terminology in Section 2. In Section 3, we consider some properties of class
n-∗-paranormal which will be used in the sequel. In Section 4, some variants of
Weyl type theorems such as property (w), property (gw), property (t), property
(gt) and other properties will be studied. Section 5 is devoted to extend the
asymmetric Putnam-Fuglede theorem to the class of n-∗-paranormal. Finally,
in Section 6, we will show that the class n-∗-paranormal operator is finite and
it remains invariant under compact perturbation.

2. Notation and terminology

If the range TH of T ∈ B(H ) is closed and α(T )=dimker(T ) < ∞ (resp.,
β(T )=co-dimTH < ∞), then T is an upper semi-Fredholm (resp., lower semi-
Fredholm) operator. Let SF+(H ) (resp., SF−(H )) denote the semigroup of
upper semi Fredholm (resp., lower semi Fredholm) operator on H . An operator
T ∈ B(H ) is said to be semi-Fredholm, T ∈ SF , if T ∈ SF+(H ) ∪ SF−(H )
and Fredholm if T ∈ SF+(H ) ∩ SF−(H ). If T is semi-Fredholm, then the
index of T is defined by ind(T ) = α(T )−β(T ). The classes of upper semi-Weyl
operators W+(H ) and lower semi-Weyl operators W−(H ) are defined by

W+(H ) = {T ∈ B(H ) : T is upper semi Fredholm and ind(T ) ≤ 0},

W−(H ) = {T ∈ B(H ) : T is lower semi Fredholm and ind(T ) ≥ 0}.

Let a := a(T ) be the ascent of an operator T ; i.e., the smallest nonnegative
integer p such that ker(T p) = ker(T p+1). If such integer does not exist we
put a(T ) = ∞. Analogously, let d := d(T ) be descent of an operator T ;
i.e., the smallest nonnegative integer s such that T sH = T s+1H , and if
such integer does not exist we put d(T ) = ∞. It is well known that if a(T )
and d(T ) are both finite, then a(T ) = d(T ) [19, Proposition 38.3]. Moreover,
0 < a(T − λI) = d(T − λI) < ∞ precisely when λ is a pole of the resolvent of
T , see Heuser [19, Proposition 50.2].

A bounded linear operator T acting on a Hilbert space H is Weyl, T ∈ W ,
if T ∈ W+(H )∩W−(H ) and Browder, T ∈ B, if T is Fredholm of finite ascent
and descent. Let C denote the set of complex numbers. The Weyl spectrum
σw(T ) and Browder spectrum σb(T ) of T are defined by

σw(T ) = {λ ∈ C : T − λ /∈ W}

and

σb(T ) = {λ ∈ C : T − λ /∈ B}.

Let E0(T ) = {λ ∈ isoσ(T ) : 0 < α(T − λ) < ∞} and π0(T ) denote the set of
all normal eigenvalues (Riesz points) of T . According to Coburn [15], Weyl’s
theorem holds for T if ∆(T ) = σ(T ) \ σw(T ) = E0(T ) and Browder’s theorem
holds for T if ∆(T ) = π0(T ).

Let SF−

+ (H ) = {T ∈ SF+(H ) : ind (T) ≤ 0}. The upper semi Weyl
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spectrum is defined by σSF
−

+

(T ) = {λ ∈ C : T − λ /∈ SF−

+ (H )}. According to

Rakočević [24], an operator T ∈ B(X ) is said to satisfy a-Weyl’s theorem if
∆a(T ) = σa(T ) \ σSF

−

+

(T ) = E0
a(T ), where

E0
a(T ) = {λ ∈ isoσa(T) : 0 < α(T− λI) < ∞}.

It is known [24] that an operator satisfying a-Weyl’s theorem satisfies Weyl’s
theorem, but the converse does not hold in general.

An operator T ∈ B(H ) is called B-Fredholm, T ∈ BF , if there exists a
natural number n, for which the induced operator Tn = T | T nH , T0 = T is
Fredholm in the usual sense [10]. The class of B-Weyl operator T ∈ B(H ) is
defined by BW = {T ∈ BF : ind(Tn) = 0}. The B-Weyl spectrum σBW (T ) is
defined by σBW (T ) = {λ ∈ C : T − λ /∈ BW} [10]. As a stronger version of
Weyl’s theorem, generalized Weyl’s theorem was introduced by Berkani [11].
Let E(T ) be the set of all eigenvalues of T which are isolated in σ(T ). We say
that T satisfies generalized Weyl’s theorem if ∆g(T ) = σ(T )\σBW (T ) = E(T ).

Following [10], we say that T satisfies generalized Browders’s theorem, if
∆g(T ) = π(T ), where π(T ) is the set of poles of T.

Let SBF−

+ (H ) denote the class of all upper B-Fredholm operators such that
ind (T) ≤ 0. The upper B-Weyl spectrum σSBF

−

+

(T ) of T is defined by

σSBF
−

+

(T ) = {λ ∈ C : T − λ /∈ SBF−

+ (X )}.

Following [11], we say that generalized a-Weyl’s theorem holds for T ∈
B(X ) if ∆g

a(S) = σa(T )\σSBF
−

+

(T ) = Ea(T ), where Ea(T ) = {λ ∈ isoσa(T ) :

α(T − λ) > 0} is the set of all eigenvalues of T which are isolated in σa(T )
and that T ∈ B(X ) obeys generalized a-Browder’s theorem if ∆g

a(T ) = πa(T ).
Following [23], we say that T ∈ B(H ) satisfies property (w) if ∆a(T ) =

E0(T ). The property (w) has been studied in [4, 23]. In Theorem 2.8 of [4], it
is shown that property (w) implies Weyl’s theorem, but the converse is not true
in general. We say that T ∈ B(H ) satisfies property (gw) if ∆g

a(T ) = E(T ).
Property (gw) has been introduced and studied in [5]. Property (gw) extends
property (w) to the context of B-Fredholm theory, and it is proved in [5] that
an operator possessing property (gw) satisfies property (w) but the converse
is not true in general. According to [12], an operator T ∈ B(H ) is said to
possess property (gb) if ∆g

a(T ) = π(T ), and is said to possess property (b) if
∆a(T ) = π0(T ). It is shown in Theorem 2.3 of [12] that an operator possessing
property (gb) satisfies property (b) but the converse is not true in general.

Following [28], we say that T ∈ B(H ) satisfies property (t) if ∆+(T ) =
σ(T ) \ σSF

−

+

(T ) = E0(T ). The property (t) has been studied in [28]. In The-

orem 2.4 of [28] it is shown that property (t) implies property (w), but the
converse is true in general. We say that T ∈ B(H ) is said to be possesses
property (gt) if ∆g

+(T ) = σ(T ) \ σSBF
−

+

(T ) = E(T ). Property (gt) extends

property (t) to the context of B-Fredholm theory and it is proved in [28, The-
orem 2.1] that an operator T possessing property (gt) possesses property (t),
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but the converse is not true.
We say that T ∈ B(H ) has the single-valued extension property (SVEP) at

point λ ∈ C if for every open neighborhood Uλ of λ, the only analytic function
f : Uλ −→ H which satisfies the equation (T − µ)f(µ) = 0 is the constant
function f ≡ 0. It is well-known that T ∈ B(H ) has SVEP at every point
of the resolvent ρ(T ) := C \ σ(T ). Moreover, from the identity Theorem for
analytic function it easily follows that T ∈ B(H ) has SVEP at every point
of the boundary ∂σ(T ) of the spectrum. In particular, T has SVEP at every
isolated point of σ(T ). In [20, Proposition 1.8], Laursen proved that if T is of
finite ascent, then T has SVEP.

The quasi-nilpotent part of an operator T ∈ B(H ) is the set

H0(T ) = {x ∈ H : lim
n−→∞

‖T nx‖
1

n = 0}.

If T ∈ B(H ), the analytic core K(T ) is the set of all x ∈ H such that there
exist a constant c > 0 and a sequence of elements xn ∈ H such that x0 = x,
Txn = xn−1, and ‖xn‖ ≤ cn ‖x‖ for all n ∈ N.

H0(T ) and K(T ) are generally non-closed hyperinvariant subspaces of T
such that ker(T n) ⊆ H0(T ) for all n ∈ N ∪ {0} and TK(T ) = K(T ); also if
λ ∈ isoσ(T ), then H = H0(T −λ)⊕K(T −λ), where H0(T −λ) and K(T −λ)
are closed [1].

3. Spectral properties of n-∗-paranormal

In this section we consider some properties of n-∗-paranormal which will be
used in the sequel. Recall that an operator B ∈ B(H ) is said to be simply
polaroid if the isolated points of the spectrum of the operator are simple poles
(i.e., order one poles) of the resolvent of the operator.

Theorem 3.1. Let T ∈ B(H ) be algebraically C(n) operator and let λ be an

isolated point in σ(T ). Then λ is a simple pole of the resolvent of T . (That is,
operators in C(n) are simply polaroid.)

Proof. Let λ ∈ isoσ(T ). Then T has a direct sum decomposition T = T1 ⊕ T2

on H = H1 ⊕ H2 such that σ(T1) = {λ} and σ(T2) = σ(T ) \ {λ}. Let q be a
nonconstant complex polynomial such that q(T ) is class C(n) operator. Then
H1 is a q(T )-invariant subspace, and hence q(T1) is in C(n) (see [13, Theorem
8]) such that σ(q(T1)) = q(σ(T1)) = q({λ}). But then q(λ) ∈ π0(T1) and so
λ ∈ π0(T1). Hence, since λ /∈ σ(T2), we have λ ∈ π0(T ). �

Theorem 3.2. Let T ∈ B(H ) be such that T ∈ C(n), 0 6= σp(T ) and

T =

(
λ T12

0 T22

)
on ker(T − λ)⊕ ker(T − λ)⊥.

Then

(3.1) T12

(
T22

λ
+ · · ·+

(
T22

λ

)n+1
)

= (n+ 1)T12,
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and

(3.2)
∥∥T n+2

22 x
∥∥2/(n+2)

‖x‖2(n+1)/(n+2) ≥ ‖T12x‖
2
+ ‖T22x‖

2

for any x ∈ ker(T − λ)⊥. In particular, T22 ∈ P(n+ 1) for every n ≥ 2.

Proof. Since C(n) ⊆ P(n + 1) for every n ≥ 2, the proof follows immediately
from Theorem 3.1 of [32]. �

Corollary 3.3. Let T ∈ B(H ) be such that T ∈ C(n) and λ 6= 0. Then

ker(T22 − λ) = {0}, where T22 is as in Theorem 3.2.

Proof. Let x ∈ ker(T22−λ). Then ‖(T − λ)x‖2 ≤ ‖T12x‖
2 ≤ 0 by (3.2). Hence

x ∈ ker(T − λ) ∩ ker(T − λ)⊥ = {0} and so ker(T22 − λ) = {0}. �

Corollary 3.4. If T ∈ C(n) and λµ 6= 0, then ker(T − λ) ⊥ ker(T − µ) for

µ 6= λ.

Proof. Let

T =

(
λ T12

0 T22

)
on ker(T − λ)⊕ ker(T − λ)⊥

and x = x1 ⊕ x2 ∈ ker(T − µ). Then

0 = (T − µ)x = [(λ− µ)x1 + T12x2]⊕ (T − µ)x2.

By (T22 − µ)x2 = 0 and (3.2), we have ‖T12x2‖
2 = 0. So, x1 = 0 for λ 6= µ,

which implies x ∈ ker(T − λ)⊥ and hence ker(T − λ) ⊥ ker(T − µ). �

Corollary 3.5. If T ∈ C(n), then T has SVEP.

Proof. Let f be an analytic function such that (T −λ)f(λ) = 0 on an open set
U . By assumption, f(λ) ∈ ker(T − λ) for each λ ∈ D. Thus f(λ) ⊥ f(µ) for
any two different nonzero numbers λ and µ in D by Corollary 3.4. Therefore,
for any sequence {µn} of non-zero complex numbers such that µn −→ λ, thus

‖f(λ)‖2 = limµn→λ 〈f(λ), f(µn)〉 = 0. That is, T has SVEP. �

Recall that T is said to have totally finite ascent if T − λ has finite ascent
for every λ ∈ C.

Lemma 3.6. If T ∈ C(n), then ker(T − λ) = ker(T − λ)2 for each λ ∈ C. In

particular, T has totally finite ascent.

Proof. By definition, ker(T n+1) = ker(T ), so that ker(T 2) = ker(T ). Assume
0 6= λ ∈ σp(T ) because the case λ /∈ σp(T ) is obvious. Let 0 6= x ∈ ker(T − λ)2

and x = x1 ⊕ x2 ∈ ker(T − λ)⊕ ker(T − λ)⊥. Then

0 = ker(T − λ)2x =

(
0 T12(T22 − λ)
0 (T22 − λ)2

)
x = T12(T22 − λ)x2 ⊕ (T22 − λ)2x2.

Since ker(T22 − λ) = {0} by Theorem 3.2, it follows that x2 = 0 and x = x1 ∈
ker(T − λ). �
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Recall that T ∈ B(H ) is said to be normaloid if r(T ) = ‖T ‖, where r(T ) is
the spectral radius of T .

Definition 3.7. An operator T is said to be n̂-∗-paranormal (abbreviation
T ∈ C(n̂)) if

∥∥T 1+ix
∥∥1/(1+i)

‖x‖i/(i+1) ≥ ‖T ∗x‖ for all x ∈ H and i ≥ n.

Operators which are n̂-∗-paranormal is a generalization of ∗-paranormal op-
erators and a subclass of n-∗-paranormal operators. It is easy to see that
1̂-∗-paranormal equals ∗-paranormality. Recall that T ∈ B(H ) is called n̂-

paranormal (abbreviation T ∈ P(n̂)) if
∥∥T 1+ix

∥∥1/(1+i)
‖x‖i/(i+1) ≥ ‖Tx‖ for

all x ∈ H and i ≥ n.

Theorem 3.8. In B(H ), it holds C(n̂) ⊆ P(n̂+ 1) for all n ≥ 1.

Proof. By the definition it holds ‖T ∗x‖i+1 ≤
∥∥T i+1x

∥∥ ‖x‖i . Therefore

‖T ∗Tx‖i+1 ≤
∥∥T i+2x

∥∥ ‖Tx‖i

and

‖Tx‖2(i+1) ≤ ‖T ∗Tx‖i+1 ‖x‖i+1 ≤
∥∥T i+2x

∥∥ ‖Tx‖i ‖x‖i+1
.

Hence

‖Tx‖i+2 ≤
∥∥T i+2x

∥∥ ‖x‖i+1
.

That is, T ∈ P(n̂+ 1). �

Lemma 3.9. Let T ∈ B(H ). If T ∈ C(n̂), then T is normaloid.

Proof. Since T ∈ C(n̂), we have T ∈ P(n̂+ 1) by Theorem 3.8, and so the
result follows by Lemma 2.6 of [31]. �

Recall that T is convexoid if convσ(T ) = W (T ), where W (T ) is convex with

convex hull convσ(T ) ⊆ W (T ).

Lemma 3.10. Let T ∈ B(H ) be such that T ∈ C(n). Assume that σ(T ) =
{λ}. Then T = λ.

Proof. We have two cases:
Case I: λ = 0. T being normaloid, and so T = 0.
Case II: λ 6= 0. Here T is invertible, and since T ∈ C(n), we see that T, T−1

are normaloid. On the other hand σ(T−1) = { 1
λ
}, so ‖T ‖

∥∥T−1
∥∥ = 1. This

implies that 1
λ
T is unitary with its spectrum σ( 1

λ
T ) = {1}. It follows that T

is convexoid, so W (T ) = {λ}. Therefore T = λ. �

Lemma 3.11. Let T be a quasinilpotent algebraically n-∗-paranormal operator.

Then T is nilpotent.
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Proof. Suppose that q(T ) is n-∗-paranormal for some non-constant polynomial
q. Since σ(q(T )) = q(σ(T )), the operator q(T ) − q(0) is quasinilpotent. Since
q(T ) ∈ C(n), it follows from Lemma 3.10 that cTm(T−λ1)(T−λ2) · · · (T−λn) =
q(T ) − q(0) = 0, where (m ≥ 1). Since T − λj is invertible for every 0 6= λj ,
1 ≤ j ≤ n, we must have Tm = 0. �

Theorem 3.12. Let T be algebraically n-∗-paranormal operator. Then T is

isoloid.

Proof. Let λ ∈ isoσ(T ) and let E := 1
2πi

∫
∂D

(λ − T )−1 dλ be the associated
Riesz idempotent, where D is a closed disc centred at λ which contains no
other points of σ(T ). We can represent T as the direct sum T = T1⊕T2, where
σ(T1) = {λ} and σ(T2) = σ(T ) \ {λ}. Since T is algebraically n-∗-paranormal,
q(T ) is in C(n) for some non-constant polynomial q. Since σ(T1) = {λ}, we must
have σ(q(T1)) = q(σ(T1)) = q({λ}) = {q(λ)}. Since q(T1) is n-∗-paranormal,
it follows from Lemma 3.11 that q(T1) − q(λ) = 0. Put Q(z) := q(z) − q(λ).
Then Q(T1) = 0, and hence T1 is algebraically n-∗-paranormal operator. Since
T1 − λ is quasinilpotent and algebraically n-∗-paranormal operator, it follows
from Lemma 3.11 that T1−λ is nilpotent, and so λ ∈ σp(T1). Hence λ ∈ σp(T ).
This shows that T is isoloid. �

An operator T ∈ B(H ) is said to be semi-regular if TH is closed and
ker(T ) ⊂

⋂
n∈N

T nH ; T admits a generalized Kato decomposition, GKD for
short, if there exists a pair of T -invariant closed subspaces (M,N) such that
H = M ⊕ N , the restriction T |M is quasinilpotent and T |N is semi-regular.
We say that T is of Kato type at a point λ if (T − λ)|M is nilpotent in the
GKD for T − λ. Fredholm operators are Kato type.

Theorem 3.13. Let T be an algebraically n-∗-paranormal operator. Then T
is of Kato type at each λ ∈ isoσ(T ).

Proof. Let T be an algebraically n-∗-paranormal operator and λ ∈ isoσ(T ).
Then H = H0(T −λ)⊕K(T −λ), where T1 = T |H0(T−λ) satisfies σ(T1) = {λ}
and T |K(T−λ) is semi-regular. Since T1 is algebraically n-∗-paranormal, then
there exists a non-constant polynomial q(·) such that q(T1) is in C(n). Then
σ(q(T1)) = q(σ(T1)) = q({λ}) = {q(λ)}. Applying Lemma 3.10, it follows that
H0(q(T )− q(λ)) = ker(q(T )− q(λ)). So,

0 = q(T1)− q(λ) = c(T1 − λ)m
n∏

j=1

(T − λj)

for some complex numbers c, λ1, . . . , λn, then for each j = 1, . . . , n, T − λj is
invertible, which implies T1−λ is nilpotent and hence T−λ is of Kato type. �

Lemma 3.14. Let T ∈ B(H ). If T belongs to class C(n), then T is isoloid.

Proof. Let λ ∈ isoσ(T ). Then T and T ∗ have SVEP at λ. Thus T − λ is
Kato type, then a(T − λ) = d(T − λ) = p for some integer p ≥ 1 and H =
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ker(T − λ)p ⊕ (T − λ)pH ([3, Theorems 2.6 and 2.9] and [21, Proposition
4.10.6]), which implies that λ is an eigenvalue of T [19, Proposition 50.2]. �

4. Variation of Weyl type theorems

We begin this section with the following definition.

Definition 4.1. Let T ∈ B(H ). Then T is said to be possesses

(1) property (S) if ∆b(T ) = σ(T ) \ σb(T ) = E0(T ) [27].
(2) property (gS) if ∆d(T ) = σ(T ) \ σD(T ) = E(T ) [27].
(3) property (m) if σ(T ) \ σub(T ) = E0(T ) [26].
(4) property (gm) if σ(T ) \ σLD(T ) = E(T ) [26].
(5) property (B) if σ(T ) \ σSF

+

−

(T ) = π0(T ) [25].

(6) property (gB) if σ(T ) \ σSBF
+

−

(T ) = π(T ) [25].

Theorem 4.2. Let T ∈ B(H ). The following assertions hold:

(i) If T ∗ belongs to class C(n), then a-Weyl’s theorem, or equivalently

Weyl’s theorem, property (w), property (t), property (m), property (S),
property (B), property (b), hold for T .

(ii) If T belongs to class C(n), then a-Weyl’s theorem, or equivalently

Weyl’s theorem, property (w), property (t), property (m), property (S),
property (B), property (b), hold for T ∗.

Proof. (i) The hypothesis T ∗ belongs to class C(n) implies that by Corollary
3.5 that T ∗ has SVEP and this would be implies that σ(T ) = σa(T ), σw(T ) =
σb(T ) = σSF

−

+

(T ) = σub(T ) and since T is polaroid if and only if T ∗ is polaroid

and this with T ∗ has SVEP implies T is a-polaroid and hence E0
a(T ) = E0(T ) =

π0(T ) = π0
a(T ). Therefore

E0
a(T ) = ∆a(T ) = ∆+(T ) = E0(T ) = ∆(T ) = π0(T ) = σ(T ) \ σub(T ).

That is, a-Weyl’s theorem, or equivalently, property (w), property (t), property
(m), property (S), property (B), property (b), hold for T .

(ii) The hypothesis T belongs to class C(n) implies that by Corollary 3.5
that T has SVEP and this would be implies that σ(T ∗) = σa(T

∗), σw(T
∗) =

σSF
−

+

(T ∗) = σb(T
∗) = σub(T

∗), and since T is polaroid if and only if T ∗ is

polaroid and this with T has SVEP implies T ∗ is a-polaroid and so E0
a(T

∗) =
E0(T ∗) = π0(T ∗) = π0

a(T
∗). Therefore

π0(T ∗) = ∆(T ∗) = ∆a(T
∗) = E0

a(T
∗) = ∆+(T

∗) = E0(T ) = σ(T ∗) \ σub(T
∗).

That is, a-Weyl’s theorem , or equivalently, property (w), property (t), property
(m), property (S), property (B), property (b), hold for T ∗. �

For T ∈ B(H ), let Hnc(σ(T )) denote the set of all analytic functions,
defined on an open neighborhood of σ(T ), such that f is non constant on each
of the components of its domain. Define, by the classical functional calculus,
f(T ) for every f ∈ Hnc(σ(T )).
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Theorem 4.3. Let f ∈ Hnc(σ(T )).

(i) If T ∗ belongs to C(n), then property (t), or equivalently property (w),
property (m), property (S), property (B), property (b), a-Weyl’s theo-

rem hold for f(T ).
(ii) If T belongs to C(n), then property (t), or equivalently property (w),

property (m), property (S), property (B), property (b), a-Weyl’s theo-

rem hold for f(T ∗).

Proof. (i) Since T is polaroid by Theorem 3.1. It follows from Lemma 3.11 of [2]
that f(T ) is polaroid. By Theorem 2.40 of [1], we have f(T ∗) has SVEP since
T ∗ has SVEP by Corollary 3.5. Hence from equivalence 3.5 in [28] we conclude
that f(T ) is a-polaroid and hence it then follows by [28, Theorem 3.4(i)] that
property (t) holds for f(T ) and this by (i) of Theorem 4.2 is equivalent to
saying that property (w), property (m), property (S), property (B), property
(b), a-Weyl’s theorem hold for f(T ).

(ii) By Theorem 3.1, T is polaroid and so T ∗ is polaroid by the equivalence
3.1 in [28], and this implies by Lemma 3.11 of [2] that f(T ∗) is polaroid. By
Theorem 2.40 of [1], we have f(T ) has SVEP, hence from equivalence 3.6 in
[28] we conclude that f(T ∗) is a-polaroid and hence it follows by [28, Theorem
3.4(ii)] that property (t) holds for f(T ∗) and this by (ii) of Theorem 4.2 is
equivalent to saying that property (w), property (m), property (S), property
(B), property (b), a-Weyl’s theorem hold for f(T ∗). �

Theorem 4.4. Let T ∈ B(H ).

(i) If T ∗ belongs to class C(n), then property (gt), or equivalently prop-

erty (gw), property (gm), property (gS), property (gB), property (gb),
generalized a-Weyl’s theorem hold for T .

(ii) If T belongs to class C(n), then property (gt), or equivalently prop-

erty (gw), property (gm), property (gS), property (gB), property (gb),
generalized a-Weyl’s theorem hold for T ∗.

Proof. (i) Since T ∗ has SVEP by Corollary 3.5, we have by [1, Corollary 2.45]
that σ(T ) = σa(T ) and from the proof of Theorem 2.14 of [28] we then have
σSBF

−

+

(T ) = σBW (T ) = σLD(T ) = σD(T ). By Theorem 3.1, T is polaroid,

then by equivalence 3.5 in [28], we have T is a-polaroid and so π(T ) = πa(T ) =
E(T ) = Ea(T ) (see the proof of Theorem of [28]). Therefore,

π(T ) = ∆g(T ) = E(T ) = ∆g
+(T ) = ∆g

a(T ) = Ea(T ).

That is, property (gt), or equivalently property (gw), property (gm), property
(gS), property (gB), property (gb), generalized a-Weyl’s theorem hold for T .

(ii) Since T has SVEP by Corollary 3.5, we have by [1, Corollary 2.45]
that σ(T ∗) = σ(T ) = σa(T

∗) and from the proof of Theorem 2.15 of [28]
we then have σSBF

−

+

(T ∗) = σBW (T ∗) = σLD(T ∗) = σD(T ∗). Since T ∗ is

polaroid by Theorem 3.1 (T is polaroid if and only if T ∗ is polaroid) and T has
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SVEP, it then follows by equivalence 3.1 in [28] that T ∗ is a-polaroid and so
π(T ∗) = πa(T

∗) = E(T ∗) = Ea(T
∗). Consequently

π(T ∗) = ∆g(T ∗) = E(T ∗) = ∆g
+(T

∗) = ∆g
a(T

∗) = Ea(T
∗).

That is, property (gt), or equivalently property (gw), property (gm), property
(gS), property (gB), property (gb), generalized a-Weyl’s theorem hold for T ∗.

�

Theorem 4.5. Let f ∈ Hnc(σ(T )).

(i) If T ∗ belongs to class C(n), then property (gt), or equivalently prop-

erty (gw), property (gm), property (gS), property (gB), property (gb),
generalized a-Weyl’s theorem hold for f(T ).

(ii) If T belongs to class C(n), then property (gt), or equivalently prop-

erty (gw), property (gm), property (gS), property (gB), property (gb),
generalized a-Weyl’s theorem hold for f(T ∗).

Proof. (i) Since T is polaroid by Theorem 3.1. It follows from Lemma 3.11 of
[2] that f(T ) is polaroid. By Theorem 2.40 of [1], we have f(T ∗) has SVEP
since T ∗ has SVEP by Corollary 3.5. Hence from equivalence 3.5 in [28] we con-
clude that f(T ) is a-polaroid and hence it then follows by [28, Theorem 3.5(i)]
that property (gt) holds for f(T ) and this by (i) of Theorem 4.4 is equivalent
to saying that property (gw), property (gm), property (gS), property (gB),
property (gb), generalized a-Weyl’s theorem hold for f(T ).

(ii) By Theorem 3.1, T is polaroid and so T ∗ is polaroid by the equivalence
3.1 in [28], and this implies by Lemma 3.11 of [2] that f(T ∗) is polaroid. By
Theorem 2.40 of [1], we have f(T ) has SVEP, hence from equivalence 3.6 in
[28] we conclude that f(T ∗) is a-polaroid and hence it follows by [28, The-
orem 3.5(ii)] that property (gt) holds for f(T ∗) and this by (ii) of Theorem
4.4 is equivalent to saying that property (gw), property (gm), property (gS),
property (gB), property (gb), generalized a-Weyl’s theorem hold for f(T ∗). �

Theorem 4.6. If T ∈ C(n) with σw(T ) = {0}, then T is a compact normal

operator.

Proof. By Theorem 4.2, T satisfies Weyl’s theorem and this implies that each
element in σ(T ) \ σw(T ) = σ(T ) \ {0} is an eigenvalue of T with finite multi-
plicity, and is isolated in σ(T ). Hence σ(T ) \ {0} is a finite set or a count-
able set with 0 as its only accumulation point. Put σ(T ) \ {0} = {λn},
where λn 6= λm whenever n 6= m and {|λn|} is a non-increasing sequence.
Since T is normaloid, we have |λ1| = ‖T ‖ . By Theorem 9 of [13], we have
(T − λ1)x = 0 implies (T − λ1)

∗x = 0. Hence ker(T − λ1) is a reducing
subspace of T . Let E1 be the orthogonal projection onto ker(T − λ1). Then
T = λ1⊕T1 on H = E1H ⊕ (1−E1)H . Since T1 ∈ C(n) by Theorem 3.2 and
σp(T ) = σp(T1)∪ {λ1}, we have λ2 ∈ σp(T1). By the same argument as above,
ker(T−λ2) = ker(T1−λ2) is a finite dimensional reducing subspace of T which is
included in (1−E1)H . Put E2 be the orthogonal projection onto ker(T −λ2).
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Then T = λ1E1 ⊕ λ2E2 ⊕ T2 on H = E1H ⊕ E2H ⊕ (1 − E1 − E2)H .
By repeating above argument, each ker(T − λn) is a reducing subspace of
T and ‖T −

⊕n

k=1 λkEk‖ = ‖Tn‖ = |λn+1| −→ 0 as n → ∞. Here Ek is
the orthogonal projection onto ker(T − λk) and T = (

⊕n

k=1 λkEk) ⊕ Tn on
H =

⊕n

k=1 EkH ⊕ (1−
∑n

k=1 Ek)H . Hence T =
⊕

∞

k=1 λkEk is compact and
normal because each Ek is a finite rank orthogonal projection which satisfies
EkEt = 0 whenever k 6= t by Corollary 3.4 and λn −→ 0 as n → ∞. �

5. An asymmetric Putnam-Fuglede theorem

The classical Puntam-Fuglede theorem asserts that if T ∈ B(H ) and S ∈
B(H ) are normal operators and TX = XS for some X ∈ B(H ), then T ∗X =
XS∗. Let us overwrite the Puntam-Fuglede theorem in an asymmetric form:
if T ∈ B(H ) and S ∈ B(H ) are normal operators and TX = XS∗ for
some X ∈ B(H ), then T ∗X = XS. In this section, we mainly extend the
asymmetric Putnam-Fuglede theorem to the class of n-∗-paranormal operators.

Theorem 5.1 (Berberian’s Extension). Let H be a complex Hilbert space.

Then there exist a Hilbert space H ◦ ⊃ H and φ : B(H ) 7−→ B(H ) (T 7−→
T ◦) satisfying: φ is an ∗-isometric isomorphism preserving the order such that

(i) φ(T ∗) = φ(T )∗, φ(I) = φ(I)◦, φ(αT +βS) = αφ(T )+βφ(S), φ(TS) =
φ(T )φ(S), ‖φ(T )‖ = ‖T ‖ for all T, S ∈ B(H ) and α, β ∈ C.

(ii) If T ≤ S, then φ(T ) ≤ φ(S) for all T, S ∈ B(H ).
(iii) σ(T ) = σ(T ◦) and σa(T ) = σa(T

◦) = σp(T
◦).

Lemma 5.2. Let T ∈ B(H ) such that T ∈ C(n) and M ⊂ H an invariant

subspace of T such that T |M is normal. Then M is reducing for T .

Proof. Let us consider the matrix decomposition

T =

(
N A
0 ∗

)
,

where N = T |M is a normal operator. If T ∈ C(n), then

(5.1) ‖A∗x‖2 + ‖N∗x‖2 = ‖T ∗x‖2 ≤ ‖T nx‖
2

n ‖x‖
2(n−1)

n = ‖Nnx‖
2

n ‖x‖
2(n−1)

n

for all x ∈ M .
Let us take the Berberian’s extension of the operator T . Then the extension

T ◦ has the following matrix decomposition

T =

(
N◦ A◦

0 ∗

)
,

where N◦ and A◦ are the Berberian’s extension of the operators N and A.
Let y = [xn] denote the equivalence class of the sequence {xn}n ⊂ M . By

the inequality (5.1) and Hölder inequality we get

‖(A∗)◦y‖2 + ‖(N∗)◦y‖2 = ‖(T ∗)◦y‖2 = φ(‖T ∗xn‖
2
) ≤ φ(‖T nx‖

2

n ‖x‖
2(n−1)

n )
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≤ (φ(‖T nx‖))
2

n (φ(‖x‖))
2(n−1)

n = ‖(T ◦)ny‖
2

n ‖y‖
2(n−1)

n

= ‖(N◦)ny‖
2

n ‖y‖
2(n−1)

n .

By the [9, Theorem 1] we know that the spectrum of normal operator N◦ is
equal to its point spectrum.

If y is an eigenvector of N◦, with an eigenvalue λ, then we have

‖(A∗)◦y‖2 + |λ|2 ‖y‖2 = ‖(A∗)◦y‖2 + ‖(N∗)◦y‖2

≤ ‖(N◦)ny‖
2

n ‖y‖
2(n−1)

n = |λ|2 ‖y‖2 .

Thus (A◦)∗y = 0. But eigenvectors of N◦ spanned the subspace M
◦. Hence

A◦ = 0 and consequently A = 0. �

Proposition 5.3. Let T ∈ B(H ). If T ∈ C(n), then the residual spectrum of

T ∗ is empty. In particular, we have σa(T
∗) = σ(T ∗).

In order to prove Proposition 5.3, we need the following two lemmas from
[13].

Lemma 5.4. Let T ∈ B(H ). If T belongs to C(n) and M is an invariant

subspace for T , then T |M belongs to C(n).

Lemma 5.5. For T ∈ B(H ), let T belong to C(n) and λ be an eigenvalue of

T . If (T − λ)x = 0, then (T − λ)∗x = 0.

Proof of Proposition 5.3. It follows from Lemma 5.4 and Lemma 5.5 that each
T ∈ C(n) is a direct sum of diagonal operator and n-∗-paranormal without point
spectrum. Let us assume that T has no eigenvalues. Then since ker(T − λ) =

{0}, we have (T − λ)∗H = H for all λ ∈ C. Hence σr(T
∗) = ∅. Moreover,

σ(T ∗) = σp(T
∗) ∪ σc(T

∗) ⊂ σa(T
∗),

where σc(T ) is the continuous spectrum of T . This completes the proof. �

Theorem 5.6. Let T, S ∈ B(H ). If T, S ∈ C(n) are such that TX = XS∗

for some X ∈ B(H ), then T ∗X = XS.

Proof. Let X = U |X | be a polar decomposition of X , with U : |X |H −→ XH

unitary operator. Then the operator equation TX = XS∗ is equivalent to

T̃ |X | = |X |S∗, where T̃ := U−1TU⊕0ker(|X|). The operator T̃ belongs to class
C(n). Indeed we have
∥∥∥(T̃ )∗(x+ y)

∥∥∥
n

=
∥∥(U−1T ∗U ⊕ 0)(x+ y)

∥∥n = ‖T ∗Ux‖n

≤ ‖T nUx‖ ‖Ux‖n−1
=
∥∥(U−1T nU ⊕ 0)(x+ y)

∥∥ ‖x‖n−1

≤
∥∥∥(T̃ )n(x + y)

∥∥∥ ‖x+ y‖n−1

for each x ∈ |X |H and y ∈ ker(|X |). Thus it is enough to show that for two
n-∗-paranormal operators T, S and positive operator X such that TX = XS∗,
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the equality T ∗X = XS holds true.
Let us fix n-∗-paranormal operators T, S and positive operator X such that

TX = XS∗. Hence the subspace XH is invariant for T . Since the subspace
ker(X) is invariant for S∗, then XH is also invariant for S. As a consequence
we have the following matrices representations with respect to the decomposi-
tion H = XH ⊕ ker(X).

X =

(
A 0
0 0

)
, T =

(
T1 T2

0 T3

)
and S =

(
S1 S2

0 S3

)
.

It follows from Lemma 5.4 that T1, S1 are belong to C(n). The equation TX =
XS∗ implies that T1A = AS∗

1 . By Lemma 5.3 we have σ(S∗

1 ) = σa(S
∗

1 ).
The Berberian’s extensions T ◦

1 , S
◦

1 , A
◦ of the operators T1, S1, A satisfy the

equation

(5.2) T ◦

1A
◦ = A◦(S∗

1 )
◦

and σ(S∗

1 )
◦ = σ(S∗

1 ) = σa(S
∗

1 ) = σp((S
∗

1 )
◦). The equation (5.2) is equivalent to

(λ− T ◦

1 )A
◦ = A◦(λ− (S∗

1 )
◦)

for λ ∈ C. Thus if λ ∈ σr(T
◦

1 ), then λ ∈ σr((S
∗

1 )
◦), where σr(T ) is the residual

spectrum of T . But by Lemma 5.3, we get σ((S∗

1 )
◦) = ∅. As a consequence

σr(T
◦

1 ) = ∅. So σ(T ◦

1 ) = σa(T
◦

1 ) = σp(T
◦

1 ). Moreover, the operator T ◦

1 belongs
to class C(n) (see the proof of Lemma 5.2). Thus by Lemma 5.5 the operator
T ◦

1 is diagonal, so it is normal. Normality of T ◦

1 shows that T1 is normal. Hence
by Lemma 5.5 we get T2 = 0.

The equation (5.2) is equivalent to A◦(T ∗

1 )
◦ = S◦

1A
◦. Thus we can repeat

the above argument and show that the operator S1 is normal and S2 = 0.
Finally, to show that T ∗X = XS it is enough to show that T ∗

1A = AS1, but
it is consequence of the classical Putnam-Fuglede theorem. �

Definition 5.7. We say that the operator T ∈ B(H ) satisfies the Putnam-
Fuglede theorem if and only if for all operators X,N ∈ B(H ) such that N is
normal and TX = XN , it holds that T ∗X = XN∗.

Proposition 5.8 ([8]). The operator T ∈ B(H ) satisfies the Putnam-Fuglede

theorem if and only if each invariant subspace M ⊂ H of T such that T |M is

normal, is reducing for T .

Theorem 5.9. Let T ∈ B(H ). If T belongs to C(n) and N normal and

TX = XN , then T ∗X = XN∗.

Proof. The proof follows immediately from Lemma 5.2 and Proposition 5.8. �

6. Finite operators and orthogonality

Let T, S ∈ B(H ) we define the generalized derivation δT,S : B(H ) 7−→
B(H ) by

δT,S(X) = TX −XS,
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we note δT,T = δT . Let Y be a complex Banach space. We say that b ∈ Y is
orthogonal to a ∈ Y if for all complex λ there holds

(6.1) ‖a+ λb‖ ≥ ‖a‖ .

This definition has a natural geometric interpretation. Namely, b ⊥ a if and
only if the complex line {a+λb |λ ∈ C} is disjoint with the open ball B(0, ‖a‖),
i.e., if and only if this complex line is a tangent one. Note that if b is orthogonal
to a, then a need not be orthogonal to b. If Y is a Hilbert space, then from
(6.1) follows 〈a, b〉 = 0, i.e., orthogonality in the usual sense.

Definition 6.1. We say that the operator T ∈ B(H ) is finite if for all X ∈
B(H ), we have ‖I − (TX −XT )‖ ≥ 1.

J. H. Anderson and C. Foias [6] have shown that if T, S are normal operators,
then

(6.2) ‖K − (TX −XS)‖ ≥ ‖K‖

for allX ∈ B(H ) and for allK ∈ δT,S . Hence the range of δT,S is orthogonal to
the null space of δT,S . In particular the inequality ‖K − (TX −XT )‖ ≥ ‖K‖
means that the range of δT is orthogonal to ker(δT ) in the sense of Birkhoff.
It is easy to see that if the range of δT is orthogonal to δT , then T is finite.
Indeed, we have K = I ∈ ker(δT ). In this paper we prove that n-∗-paranormal
operator is finite. An extension of inequality (6.2) is also given.

An operator T ∈ B(H ) is said to be spectraloid if w(T ) = r(T ), where
w(T ) is the numerical radius of T . Hence the following inclusions hold:

hyponormal ⊂ p-hyponormal ⊂ ∗-paranormal ⊂ normaloid ⊂ spectraloid.

Let T ∈ B(H ), the approximate reduced spectrum of T , σar(T ) is defined as

σar(T ) := {λ ∈ C : there exists a normed sequence {xn} ⊂ H satisfying

(T − λ)xn −→ 0 and (T − λ)∗xn −→ 0} .

In [30], J. P. Williams proved that the class of finite operator, F, contains every
normal, hyponormal operators. We will show that operators in C(n) are finite.
The following lemmas was proved in [22].

Lemma 6.2. Let T ∈ B(H ).

(i) If σar(T ) 6= ∅, then T is finite.

(ii) ∂W (T ) ∩ σ(T ) ⊂ σar(T ).

Lemma 6.3. Let T ∈ B(H ). If T is spectraloid, then T is finite.

Proof. Suppose that T is spectraloid. Then we have w(T ) = r(T ). Then there

exists λ ∈ σ(T ) ⊂ W (T ) such that |λ| = w(T ). Thus λ ∈ ∂W (T ). This implies
that ∂W (T ) ∩ σ(T ) 6= ∅. Hence σar(T ) 6= ∅ by (ii) of Lemma 6.2 and so T is
finite by (i) of Lemma 6.2. �

In the following theorem we will show that if T ∈ C(n), then T is finite.
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Theorem 6.4. Let T ∈ B(H ). If T ∈ C(n), then T ∈ F.

Proof. Let T ∈ C(n). Then T is normaloid and hence spectraloid. But a
spectraloid operator T is finite by Lemma 6.3. Consequently, T is finite. �

Lemma 6.5. Let T,N ∈ B(H ) such that T ∈ C(n) and N is normal. If

TN = NT , then for every λ ∈ σp(T ), we have

|λ| ≤ ‖N − (TX −XT )‖

for all X ∈ B(H ).

Proof. Let λ ∈ σp(T ) and Mλ the eigenspace associate to λ. Since TN =
NT , we have T ∗N = NT ∗ by the Fuglede-Putnam’s Theorem 5.9. Hence Mλ

reduces both T and N . According to the decomposition of H = Mλ ⊕ M⊥

λ ,
we can write T , N and X as follows:

N =

(
λ 0
0 N2

)
, T =

(
T1 0
0 T2

)
and X =

(
X1 X2

X3 X4

)
.

Since the restriction of n-∗-paranormal operator to an invariant subspace is
n-∗-paranormal, we have

‖N − (TX −XT )‖ =

∥∥∥∥
(
λ− (T1X1 −X1T1) ∗

∗ ∗

)∥∥∥∥
≥ ‖λ− (T1X1 −X1T1)‖

≥ |λ|

(
1− T1

(
X1

λ

)
−

(
X1

λ

)
T1

)

≥ |λ|. �

Theorem 6.6. If T belongs to class C(n), then for every normal operator N
such that TN = NT , we have

‖N − (TX −XT )‖ ≥ ‖N‖ for all X ∈ B(H ).

Proof. Since N is normal, we have σ(N) = σa(N). Let λ ∈ σ(T ), then it
follows by Berberian’s extension that N◦ is normal, T ◦ ∈ C(n), T ◦N◦ = N◦T ◦

and λ ∈ σp(T
◦). By applying Lemma 6.5, we get

|λ| ≤ ‖N◦ − (T ◦X◦ −X◦T ◦)‖ = ‖N − (TX −XT )‖

for all X ∈ B(H ).

sup
λ∈σ(T◦)

|λ| = ‖T ◦‖ = ‖T ‖ = r(T ) ≤ ‖N − (TX −XT )‖

for all X ∈ B(H ). �

Theorem 6.7. Let A be a C∗-algebra and let a ∈ A belongs to C(n). Then a
is finite.
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Proof. It is known from [18, Page 91] that there exist a ∗-isometric homomor-
phism φ and a Hilbert space H (φ : A 7−→ B(H )). Then φ(a) belongs to
class C(n). Since φ is isometric it results from Theorem 6.4 that a is finite. �

Corollary 6.8. Let T ∈ B(H ) belongs to class C(n). Then A = T + K is

finite, where K is a compact operator.

Proof. Since the Calkin algebra B(H )/KH is a C∗-algebra, [T ] belongs to
C(n). Hence it follows from Theorem 6.7 that [T ] = T + K is finite and we
have

‖I − (AX −XA)‖ ≥ ‖[I]− ([T ][X ]− [X ][T ])‖ ≥ ‖[I]‖ = 1. �
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