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ESSENTIAL NORMS OF INTEGRAL OPERATORS

Tesfa Mengestie

Abstract. We estimate the essential norms of Volterra-type integral op-

erators Vg and Ig , and multiplication operators Mg with holomorphic

symbols g on a large class of generalized Fock spaces on the complex
plane C. The weights defining these spaces are radial and subjected to a

mild smoothness conditions. In addition, we assume that the weights de-
cay faster than the classical Gaussian weight. Our main result estimates

the essential norms of Vg in terms of an asymptotic upper bound of a

quantity involving the inducing symbol g and the weight function, while
the essential norms of Mg and Ig are shown to be comparable to their

operator norms. As a means to prove our main results, we first charac-

terized the compact composition operators acting on the spaces which is
interest of its own.

1. Introduction

The theory of integral operators constitutes a significant part of modern
functional analysis, see for example [6,9,10,16] and references therein for some
overviews on the subject. The operators arise in many branches of mathemat-
ics, physics, engineering, biology, and economics [3, 6, 9, 10, 16], and often used
in modelling real-world situations. A typical examples of these operators in-
clude the integral operators of Fredholm, Volterra, Hammerstein and Urysohn
type. In this paper, we study the essential norms of linear integral operators
of Volterra-type. More specifically, for a holomorphic function g, we consider
the Volterra-type integral operator Vg and its companion Ig defined by

Vgf(z) =

∫ z

0

f(w)g′(w)dw and Igf(z) =

∫ z

0

f ′(w)g(w)dw.

Applying integration by parts in any of the above integrals gives the relation

Vgf + Igf = Mgf − f(0)g(0),(1.1)
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where Mgf = gf is the multiplication operator of symbol g. These operators
have been studied extensively with various contexts by several mathematicians.
For more information on the subject, we may refer to [1, 4, 12, 13, 20] and the
related references therein.

In [17], J. Pau and J. Peláez studied among others some properties of the
operator Vg on weighted Bergman spaces Apw in the unit disk D when w belongs
to a large class of rapidly decreasing weights. In an interesting and technical
paper, Constantin and Pelàez [5] fortified the approach in [17] and considered
generalized Fock spaces Fψp over C when the corresponding weight decays faster

than the classical Gaussian weight e−
|z|2

2 . They reported several results includ-
ing a complete characterization of the bounded and compact Vg acting between
these spaces. Their results show that there exists a much richer structure of
Vg on Fψp in contrast to its action on the classical Fock spaces Fp.

In [15], we continued that line of research and studied the boundedness and
compactness of Ig, and Mg on the spaces Fψp , and also Vg for the case where
it was not considered in [5]. Unlike the operator Vg, the results in [15] showed
that there exists no richer structure of Ig and Mg when they act between two
different generalized spaces of these type than on the classical setting. In some
cases, the structure of the operators rather gets poorer in contrast to the case
on the classical setting.

The purpose of this note is to continue those lines of research in [5, 15] and
estimate the essential norms of the operators Vg, Ig, and Mg when they act
between the spaces Fψp . Our main result expresses the essential norms of Vg
as an asymptotic upper bound of a quantity involving the inducing map g and
the weight function ψ. On the other hand, the essential norm of Ig and Mg are
shown to be comparable to their operator norms and expressed only in terms
of the growth of the inducing symbol g.

We shall first recall the setting. We consider a twice continuously differen-
tiable function ψ : [0,∞) → [0,∞) which we extend it to the whole complex
plane by setting ψ(z) = ψ(|z|). We further assume that the Laplacian ∆ψ is
positive and set

τ(z)
1

'

{
1, 0 ≤ |z| < 1,

(∆ψ(z))−1/2, |z| ≥ 1,
(1.2)

where τ is a radial differentiable function satisfying the conditions

lim
r→∞

τ(r) = 0 and lim
r→∞

τ ′(r) = 0.(1.3)

1The notation U(z) . V (z) (or equivalently V (z) & U(z)) means that there is a constant
C such that U(z) ≤ CV (z) holds for all z in the set of a question. We write U(z) ' V (z) if

both U(z) . V (z) and V (z) . U(z).
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In addition, we require that either there exists a constant C > 0 such that
τ(r)rC increases for large r or

lim
r→∞

τ ′(r) log
1

τ(r)
= 0.

Throughout the paper we will assume that ψ and τ satisfy all the above men-
tioned growth and smoothness admissibility conditions. It is worth noting that
there are many canonical examples of weight functions ψ that satisfy these
conditions. The power functions ψα(r) = rα, α > 2, the exponential type
functions such as ψβ(r) = eβr, β > 0, and the supper exponential functions

ψ(r) = ee
r

are all typical examples of such weights. At the end of this section,
we will specialize our main results to one of such examples.

The generalized Fock spaces Fψp consist of all entire functions f for which

‖f‖p
Fψp

=

∫
C
|f(z)|pe−pψ(z)dm(z) <∞,

where 0 < p <∞, and dm denotes the usual Lebesgue area measure on C. For
p =∞, the corresponding growth type generalized space Fψ∞ consist of all such
functions f for which

‖f‖Fψ∞ = sup
z∈C
|f(z)|e−ψ(z) <∞.

An important concept in the theory of operators has been the notion of essential
norm which we define it as follows. Let H1 and H2 be Banach spaces. Then,
the essential norm ‖T‖e of a bounded linear operator T : H1 →H2 is defined
as the distance from T to the space of compact operators from H1 to H2 :

‖T‖e = inf
K

{
‖T −K‖; K : H1 →H2 is a compact operator

}
.

In particular, ‖T‖e ≤ ‖T‖ and T is compact if and only if its essential norm
is zero. This means that the essential norm of an operator provides a useful
measure for the noncompactness of the operator. We refer to [7,8,13,14,19,21,
22] for some examples on estimations of such norms for various operators on
Hardy spaces, Bergman spaces, Lp, and Fock spaces. We prove the following
estimates for Vg, Ig, and Mg on the generalized spaces.

Theorem 1.1. Let g be an entire function on C and 1 ≤ p ≤ q ≤ ∞. If

(i) Vg : Fψp → Fψq is bounded, then

‖Vg‖e '


lim sup|z|→∞

|g′(z)|
1+ψ′(z) , p = q =∞,

lim sup|z|→∞
|g′(z)|

(
∆ψ(z)

) 1
p

1+ψ′(z) , 1 ≤ p < q =∞,

lim sup|z|→∞
|g′(z)|

(
∆ψ(z)

) q−p
pq

1+ψ′(z) , 1 ≤ p ≤ q <∞.

(1.4)

(ii) Ig or Mg : Fψp → Fψp is bounded, then

‖Ig‖e ' ‖Ig‖ ' ‖Mg‖ ' ‖Mg‖e.(1.5)
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We note that if 1 ≤ p = q <∞, then the third part of the estimate in (1.4)
simplifies to

‖Vg‖e ' lim sup
|z|→∞

|g′(z)|
1 + ψ′(z)

,

and involves no exponent p as in the first part. This shows a significance
difference with the corresponding estimate when 1 ≤ p < q < ∞. It has
been known that such a difference does not exist in the classical Fock spaces
setting [13, Theorem 3]. A similar difference has been observed on conditions
describing the boundedness of both Vg and Ig; see [5, Theorem 3] and [15,
Theorem 1.2]. On the other hand, the appearance of such a difference when
we move from the classical to the general setting with a fast decaying weight
is not totally unexpected; since in the classical Fock spaces, the monotonicity
property in the sense of inclusion Fp ⊆ Fq whenever 0 < p ≤ q ≤ ∞, holds
[11] while as seen from Corollary 2 of [5], this fails to hold for the family of
generalized Fock spaces Fψp . For finite p and q such that p 6= q, it has been, in

addition, proved that Fψp \ Fψq 6= ∅ and Fψq \ Fψp 6= ∅.
It should also be mentioned that if 0 < q < p ≤ ∞, then Vg : Fψp → Fψq is

bounded if and only if it is compact [5, Theorem 3] and [15, Theorem 1.1]. Thus,
its essential norm vanishes in this case. The same conclusion holds for Ig and
Mg when they act between Fψp and Fψq for which p 6= q because of Theorem 1.2

of [15]. By such a theorem, we in addition, have that Ig or Mg : Fψp → Fψp is
bounded if and only if g is a constant function. This implies that the essential
norms in (1.5) above are simply comparable with the value of the function g.

As pointed out earlier, the functions ψα(z) = |z|α, α > 2, ψβ(z) = eβ|z|,

β > 0 and ψ(z) = ee
|z|

satisfy all the growth and smoothness admissibility
conditions mentioned above. For such weights, one can apply Corollaries 25-27
of [5] and Theorem 1.1 of [15] to simplify further the estimates in Theorem 1.1.
For instance for the case ψα(z) = |z|α we have the following.

Corollary 1.2. Let g be an entire function on C, 1 ≤ p ≤ q ≤ ∞, ψ(z) =
ψα(z) = |z|α, α > 2 and Vg : Fψp → Fψq be a bounded linear operator. Then, if

(i) q <∞, and 1 + (α− 2)
(
1− 1

p + 1
q

)
< 0, then ‖Vg‖e = 0;

(ii) q <∞, and 1 + (α− 2)
(
1− 1

p + 1
q

)
≥ 0, then

‖Vg‖e ' lim sup
|z|→∞

|g′(z)||z|1−α+
(α−2)(q−p)

pq ,

where g is a polynomial of degree not exceeding 2 + (α−2)
(
1− 1

p + 1
q

)
.

(iii) q =∞, then

‖Vg‖e '

{
lim sup|z|→∞ |g′(z)||z|1−α, p =∞,
lim sup|z|→∞ |g′(z)||z|

α(1−p)+(p−2)
p , 1 ≤ p <∞,
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where g is a complex polynomial of degree at most α when p = q =∞
and (α(p− 1) + 2)/p whenever 1 ≤ p < q =∞.

2. Preliminaries

In this section, we collect some basic facts which will be used to prove our
main result in the next section. By Proposition A and Corollary 8 of [5], for a
sufficiently large positive number R, there exists a number η(R) such that for
any w ∈ C with |w| > η(R), there exists an entire function f(w,R) such that

|f(w,R)(z)|e−ψ(z) ≤ C min

{
1,

(
min{τ(w), τ(z)}
|z − w|

)R2

2

}
(2.1)

for all z in C, and for some constant C that depends on ψ and R. In particular,
when z belongs to D(w,Rτ(w)), the estimate becomes

|f(w,R)(z)|e−ψ(z) ' 1,(2.2)

where D(a, r) denotes the Euclidean disk centered at a and radius r > 0.
Furthermore, the functions f(w,R) belong to Fψp with norms estimated by

‖f(w,R)‖pFψp ' τ(w)2, η(R) ≤ |w|(2.3)

for all p in the range 0 < p < ∞. On the other hand, because of (2.1) and
(2.2), we observe that f(w,R) also belong to Fψ∞ and

‖f(w,R)‖Fψ∞ ' 1(2.4)

for all w ∈ C. The sequence of functions f(w,R) will serve as a test function in
our subsequent considerations replacing the roll of the sequence of the repro-
ducing kernels in the classical Fock space setting. An explicit expression for
the kernel function is still an open problem in the current setting.

Another important ingredient in proving our results is the Littlewood–Paley
type formula for functions in Fψp . For p =∞, the formula is

‖f‖Fψ∞ ' |f(0)|+ sup
z∈C

|f ′(z)|e−ψ(z)

1 + ψ′(z)
,(2.5)

which was proved recently in [15]. The corresponding formula in Fψp for finite
p was obtained in [5] and reads

‖f‖p
Fψp
' |f(0)|p +

∫
C
|f ′(z)|p e−pψ(z)(

1 + ψ′(z)
)p dm(z).(2.6)

Another useful fact is the pointwise local estimate for subharmonic functions
f , namely that

|f(z)|pe−βψ(z) .
1

δ2τ(z)2

∫
D(z,δτ(z))

|f(w)|pe−βψ(w)dm(w)(2.7)

for all finite exponent p, any real number β, and a small positive number δ: see
Lemma 7 of [5] for more details.
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The composition operator is one of the classical and well studied notions at
the interface of operator theory and function theory. Yet the notion pops up
at various instances due to its multifaced applications and continues being a
point of interest. In this note we prove the following compactness result when
it acts on generalized Fock spaces. Only the sufficiency part of the result will
be used in proving our main results. But we rather formulate the statement in
general since it is interest of its own as pointed before.

Proposition 2.1. Let 0 < p ≤ q ≤ ∞ and Φ be a nonconstant entire function
on C. Then the composition operator CΦ : Fψp → Fψq is compact if and only if
Φ(z) = az + b for some complex numbers a and b such that |a| < 1.

This result is similar to its counterpart in the classical setting which has
been studied independently by several authors for example in [2, 12, 13, 22].
The faster decaying weights used to define the spaces Fψp fail to provide a
richer structure for the operator CΦ as well.

Proof of Proposition 2.1. We begin with the proof of the necessity. We as-
sume that CΦ is compact and observe that the normalized sequence f∗(w,R) =

‖f(w,R)‖−1

Fψp
f(w,R), as described from (2.1)-(2.4), converges to zero as |w| → ∞,

and the convergence is uniform on compact subset of C. If p <∞ and q =∞,
then CΦ applied to such a sequence and subsequently invoking (2.3) imply

0 = lim
|w|→∞

‖CΦf
∗
(w,R)‖Fψ∞

= lim
|w|→∞

τ(w)
−2
p sup
z∈C
|f(w,R)(Φ(z))|e−ψ(z)

≥ lim
|w|→∞

τ(w)
−2
p

∣∣f(w,R)(Φ(z))
∣∣e−ψ(Φ(z))eψ(Φ(z))−ψ(z)

for all z, w ∈ C. In particular, it follows from setting w = Φ(z) and applying
(2.2) that

0 = lim
|Φ(z)|→∞

τ(Φ(z))
−2
p eψ(Φ(z))−ψ(z)

= lim
|Φ(z)|→∞

eψ(Φ(z))−ψ(z)− 2
p log(1+τ(Φ(z)))(2.8)

from which we claim that

lim
|Φ(z)|→∞

(
ψ(Φ(z))− ψ(z)− 2

p
log(1 + τ(Φ(z)))

)
< 0.(2.9)

If not, taking the limit further in the right-hand side of (2.8) and applying the
admissibility assumptions on (1.3), and the fact that Φ is a nonconstant entire
function, we get

0 = elim|Φ(z)|→∞

(
ψ(Φ(z))−ψ(z)− 2

p log(1+τ(Φ(z)))
)
≥ 1,

which gives a contradiction. By the growth assumption on ψ and (2.9) we now
easily see that Φ(z) = az + b for some a, b in C and |a| < 1.
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On the other hand, if p = q =∞, then using (2.2) and (2.4), and arguing as
above, we have

0 = lim
|w|→∞

‖CΦf(w,R)‖Fψ∞ ≥ lim
|Φ(z)|→∞

eψ(Φ(z))−ψ(z)(2.10)

from which we again see that Φ(z) = az + b for some |a| < 1.
If 1 ≤ p ≤ q < ∞, then we may first reformulate the task in terms of

embedding maps between Fψp and Fψq . We set a pullback measure µΦ on C as

µ(Φ,q)(E) =

∫
Φ−1(E)

e−qψ(w)dm(w)(2.11)

for every Borel subset E of C. Then we write

‖CΦf‖qFψq =

∫
C
|f(Φ(z))|qe−qψ(z)dm(z) =

∫
C
|f(z)|qdµ(Φ,q)(z).(2.12)

From this, it follows that CΦ : Fψp → Fψq is compact if and only if the embed-

ding map id : Fψp → Lq(µ(Φ,q)) is compact. By Theorem 1 of [5], the latter
holds if and only if for some δ > 0,

lim
|w|→∞

1

τ(w)2q/p

∫
D(w,δτ(w))

eqψ(z)dµ(Φ,q)(z) = 0.

Using (2.11), this condition simplifies further to

0 = lim
|w|→∞

1

τ(w)2q/p

∫
D(w,δτ(w))

eqψ(z)dµ(Φ,q)(z)

= lim
|w|→∞

1

τ(w)2q/p

∫
D(w,δτ(w))

eq(ψ(z)−ψ(Φ−1(z))dm(Φ−1(z)).(2.13)

Let us first assume that (2.13) holds and show that Φ(z) = az + b for some
|a| < 1. An application of (1.3) and estimating further on the right-hand side
of (2.13) gives

0 ≥ lim
|w|→∞

τ(w)2− 2q
p eq
(
ψ((w))−ψ(Φ−1(w))

)
= lim
|Φ(z)|→∞

τ(Φ(z))2− 2q
p eq
(
ψ((Φ(z)))−ψ(z))

)
= lim
|Φ(z)|→∞

eqψ((Φ(z)))−qψ(z))+2 p−qp log(1+τ(Φ(z)))

from which and after arguing as those in (2.9), our assertion follows.
To show the converse, we assume that Φ(z) = az + b, |a| < 1 and proceed

to show that the right-hand side of (2.13) vanishes. To this end, we have

lim
|w|→∞

1

τ(w)
2q
p

∫
D(w,δτ(w))

eq(ψ(z)−ψ(Φ−1(z))dm(Φ−1(z))

= lim
|w|→∞

1

τ(w)
2q
p

∫
D(w,δτ(w))

eq
(
ψ(z)−ψ( z−ba

)
dm
(z − b

a

)
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. lim
|w|→∞

eq
(
ψ(w)−ψ(w−ba )

)
+2 p−qp log(1+τ(w)).

From our assumption (1.2), and since |a| < 1, it follows that

lim
|w|→∞

eq(ψ(w)−ψ(w−ba ))+2 p−qp log(1+τ(w)) = 0.

Next, we prove the sufficiency of the condition when q = ∞, and let fn be
a uniformly bounded sequence of functions in Fψp that converge uniformly to
zero on compact subsets of C. Then

‖CΦfn‖Fψ∞ = sup
z∈C
|fn(Φ(z))|e−ψ(z)

= sup
z∈C
|fn(az + b)|e−ψ(z)

' sup
|z|>r

|fn(az + b)|e−ψ(az+b)eψ(az+b)−ψ(z) + sup
|z|≤r

|fn(az + b)|e−ψ(z)

. ‖fn‖Fψp sup
|z|>r

eψ(az+b)−ψ(z)

τ(az + b)
2
p

+ sup
|z|≤r

|fn(az + b)|,(2.14)

where in the last inequality we used the pointwise estimate (2.7). Since ‖fn‖Fψp
is uniformly bounded, |a| < 1 and by the growth assumption on τ , the first
summand in (2.14) goes to zero as r → ∞ and the second goes to zero when
n → ∞. This implies ‖CΦfn‖Fψ∞ → 0 as n → ∞ from which our assertion
follows, and completes the proof of the proposition. �

We will also need the following covering lemma from [5].

Lemma 2.2. Let τ be as above. Then there exists a sequence of points zj in
C satisfying the following conditions:

(i) zj 6∈ D(zk, τ(zk)), j 6= k;
(ii) C =

⋃
j D(zj , τ(zj));

(iii)
⋃
z∈D(zj ,τ(zj))

D(z, τ(z)) ⊂ D(zj , 3τ(zj));

(iv) The sequence D(zj , 3τ(zj)) is a covering of C with finite multiplicity
N .

3. Proof of the main result

We now turn to the proof of our main results. In many of related earlier
works on spaces of analytic functions, a classical approach in proving results
of these kinds has been that a sequence of finite rank operators which map a
given function f to its nth partial sum of its Taylor series was used. Such a
sequence is uniformly bounded for p > 1, which is known to be false for the
case p = 1. Due to this, several known results on essential norms of operators
do not include the functional space for p = 1; see [7,8,13,14,18,21,22] for some
examples. The nobility of the approach here is that we do not use such Taylor
series techniques and the proof works fine for p = 1 as well.
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3.1. Proof of the lower estimates in (1.4)

A classical approach to estimate lower bounds for the essential norm is to
find a suitable weakly null sequence of functions fn and use the fact that

‖Vg‖e ≥ lim sup
n→∞

‖Vgfn‖Fψq .(3.1)

On classical Fock spaces, the sequence of the reproducing kernels does this job.
Since no explicit expression is known for the kernel function in our current set-
ting, we will instead use the sequence of functions f∗(w,R) = f(w,R)/‖f(w,R)‖Fψp
as described in (2.1), (2.2), (2.3), and (2.4). With this we proceed to make
further estimates on the right-hand side of the norm in (3.1).

If p = q =∞, then applying (2.2), (2.4), and (2.5) we have

‖Vg‖e ≥ lim sup
|w|→∞

‖Vgf∗(w,R)‖Fψ∞ ' lim sup
|w|→∞

sup
z∈C

|g′(z)||f(w,R)(z)|e−ψ(z)

1 + ψ′(z)

≥ lim sup
|w|→∞

|g′(w)||f(w,R)(w)|e−ψ(w)

1 + ψ′(w)
' lim sup
|w|→∞

|g′(w)|
1 + ψ′(w)

from which our assertion follows.
Seemingly, when 1 ≤ p < q = ∞, an application of (2.2), (2.3), and (2.5)

again leads to the estimate

‖Vg‖e ≥ lim sup
|w|→∞

‖Vgf∗(w,R)‖Fψ∞ ≥ lim sup
|w|→∞

|g′(w)||f∗(w,R)(w)|e−ψ(w)

1 + ψ′(w)

' lim sup
|w|→∞

|g′(w)|
(1 + ψ′(w))τ(w)

2
p

= lim sup
|w|→∞

|g′(w)|(∆ψ(w))
1
p

1 + ψ′(w)
.(3.2)

It remains to show when 1 ≤ p ≤ q <∞. In this case, making use of (2.3) and
(2.6), we estimate

‖Vg‖e ≥ lim sup
|w|→∞

∥∥∥Vgf∗(w,R)

∥∥∥
Fψq

' lim sup
|w|→∞

1

τ(w)
2
p

(∫
C

|g′(z)|q|f(w,R)(z)|qe−qψ(z)

(1 + ψ′(z))q
dm(z)

) 1
q

≥ lim sup
|w|→∞

1

τ(w)
2
p

(∫
D(w,δτ(w))

|g′(z)|q|f(w,R)(z)|qe−qψ(z)

(1 + ψ′(z))q
dm(z)

) 1
q

for some small positive number δ. By (2.2), the last term above is comparable
to

lim sup
|w|→∞

1

τ(w)
2
p

(∫
D(w,δτ(w))

|g′(z)|q

(1 + ψ′(z))q
dm(z)

) 1
q

.



532 T. MENGESTIE

On the other hand, since |g′|q is subharmonic, it follows from (2.7) that

lim sup
|w|→∞

1

τ(w)
2
p

(∫
D(w,δτ(w))

|g′(z)|q

(1 + ψ′(z))q
dm(z)

) 1
q

& lim sup
|w|→∞

τ(w)
2
q |g′(w)|

τ(w)
2
p (1 + ψ′(w))

= lim sup
|w|→∞

|g′(w)|
(
∆ψ(w)

) q−p
pq

1 + ψ′(w)
,

and this completes the proof of the lower estimate in (1.4).

3.2. Proof of the upper estimates in (1.4)

For this, we may consider a sequence of maps Φk given by Φk(z) = k
k+1z

for each k ∈ N. By Proposition 2.1, CΦk constitutes a sequence of compact
composition operators on Fψp for all p ≥ 1. On the other hand, if Vg is bounded,

then Vg ◦ CΦk : Fψp → Fψq also constitutes a sequence of compact operators.
We may consider two different cases.

Case 1: If q =∞, then making use of (2.5) we have

‖Vg‖e ≤ ‖Vg − Vg ◦ CΦk‖
= sup
‖f‖
Fψp
≤1

‖(Vg − Vg ◦ CΦk)f‖Fψ∞

' sup
‖f‖
Fψp
≤1

sup
z∈C

|g′(z)|
∣∣∣f(z)− f(Φk(z))

∣∣∣
1 + ψ′(z)

e−ψ(z)

' sup
‖f‖
Fψp
≤1

sup
|z|>r

|g′(z)|
1 + ψ′(z)

∣∣∣f(z)− f(Φk(z))
∣∣∣e−ψ(z)

+ sup
‖f‖
Fψp
≤1

sup
|z|≤r

|g′(z)|
1 + ψ′(z)

∣∣∣f(z)− f(Φk(z))
∣∣∣e−ψ(z)(3.3)

for a certain fixed positive number r. Next, we analyze the two summands
above separately. If p = ∞ as well, then the first summand above can be
estimated as

sup
‖f‖
Fψ∞
≤1

sup
|z|>r

(
|g′(z)|

1 + ψ′(z)

)
sup
|z|>r

(∣∣f(z)− f(Φk(z))
∣∣e−ψ(z)

)

≤ sup
‖f‖
Fψ∞
≤1

sup
|z|>r

(
|g′(z)|

1 + ψ′(z)

)
‖f‖Fψ∞ ≤ sup

|z|>r

|g′(z)|
1 + ψ′(z)

.(3.4)

On the other hand, if 1 ≤ p <∞, then (2.7) implies the first summand in (3.3)
is bounded by

sup
‖f‖
Fψp
≤1

sup
|z|>r

|g′(z)|
(1 + ψ′(z))

δ−
2
p

τ(z)
2
p

(∫
D(z,δτ(z))

∣∣f(w)− f(Φk(w))
∣∣p

epψ(w)
dm(w)

) 1
p
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. sup
‖f‖
Fψp
≤1

sup
|z|>r

|g′(z)|
(1 + ψ′(z))

‖f‖Fψp
τ(z)

2
p

≤ sup
|z|>r

|g′(z)|(∆ψ(z))
1
p

1 + ψ′(z)
.(3.5)

As for the second summand in (3.3), we observe that by integrating the function
f ′ along the radial segment [ kzk+1z, z] we find∣∣∣∣f(z)− f

( k

k + 1
z
)∣∣∣∣ ≤ |z||f ′(z∗)|k + 1

(3.6)

for some z∗ in the radial segment [ kzk+1z, z]. By Cauchy estimate’s for f ′, we
also have

|f ′(z∗)| ≤ 1

r
max
|z|=2r

|f(z)|,

and hence ∣∣∣∣f(z)− f
( k

k + 1
z
)∣∣∣∣ ≤ |z|

r(k + 1)
max
|z|=2r

|f(z)|.(3.7)

The above estimates ensure that

|g′(z)|
1 + ψ′(z)

∣∣∣f(z)− f
(

k

k + 1
z

)∣∣∣e−ψ(z)

≤ |z|
r(k + 1)

sup
z∈C

(
|g′(z)|

1 + ψ′(z)
e−ψ(z)

)
max
|z|=2r

|f(z)|.

By our admissibility assumption, the weight function ψ grows faster than the

classical Gaussian weight function |z|
2

2 . Consequently, the functionf0 = 1 be-

longs to Fψp for all p. This together with the boundedness of Vg implies

‖Vgf0‖Fψ∞ = sup
z∈C

|g′(z)|
1 + ψ′(z)

e−ψ(z) <∞.

By our growth assumption on ψ and (2.7) again, we further estimate

max
|z|=2r

|f(z)| . max
|z|=2r

δ−
2
p eψ(z)

(τ(z))
2
p

(∫
D(z,δτ(z))

|f(w)|pe−pψ(w)dm(w)

) 1
p

. ‖f‖Fψp max
|z|=2r

δ−
1
p eψ(z)

τ(z)
1
p

. ‖f‖Fψp e
ψ(2r)(∆ψ(2r))

1
p .

Now combining all the above estimates, we find that the second piece of the
sum in (3.3) is bounded by

sup
‖f‖
Fψp
≤1

sup
|z|≤r

|g′(z)|
1 + ψ′(z)

∣∣f(z)− f(Φk(z))
∣∣e−ψ(z)

.
1

k + 1
sup

‖f‖
Fψp
≤1

‖f‖Fψp e
ψ(2r) ≤ 1

k + 1
eψ(2r) → 0 as k →∞,
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from which, (3.4), (3.5) and since r is arbitrary, we deduce

‖Vg‖e . sup
|z|>r

|g′(z)|
1 + ψ′(z)

= lim sup
|z|→∞

|g′(z)|
1 + ψ′(z)

as asserted.
Case 2: When 1 ≤ p ≤ q <∞, applying (2.6) we have

‖Vg‖e ≤ ‖Vg − Vg ◦ CΦk‖ = sup
‖f‖
Fψp
≤1

‖(Vg − Vg ◦ CΦk)f‖Fψq

' sup
‖f‖
Fψp
≤1

(∫
C

∣∣f(z)− f(Φk(z))
∣∣q |g′(z)|q(

1 + ψ′(z)
)q e−qψ(z)dm(z)

) 1
q

.(3.8)

Setting

dµ(g,q)(z) =
|g′(z)|qe−qψ(z)(

1 + ψ′(z)
)q dm(z)

and applying Lemma 2.2 and estimate (2.7), we get∫
C

∣∣f(z)− f(Φk(z))
∣∣qdµ(g,q)(z)

≤
∑
j

∫
D(zj ,δτ(zj))

∣∣f(z)− f(Φk(z))
∣∣qdµ(g,q)(z)

.
∑
j

∫
D(zj ,δτ(zj))

(∫
D(z,δτ(z))

∣∣f(w)− f(Φk(w))
∣∣p

epψ(w)
dm(w)

) q
p eqψ(z)

τ(z)
2q
p

dµ(g,q)(z)

.
∑
j

(∫
D(zj ,3δτ(zj))

∣∣f(w)− f(Φk(w))
∣∣p

epψ(w)
dm(w)

) q
p
∫
D(zj ,δτ(zj))

eqψ(z)

τ(z)
2q
p

dµ(g,q)(z).

We spilt the above sum as ∑
j

=
∑

j:|zj |>r

+
∑

j:|zj |≤r

(3.9)

for some fixed positive number r again. Then since q ≥ p, applying Minkowski
inequality and the finite multiplicity N of the covering sequence D(zj , 3δτ(zj)),
the first sum is bounded by

sup
j:|zj |>r

(∫
D(zj ,δτ(zj))

eqψ(z)

τ(z)
2q
p

dµ(g,q)(z)

)

×
( ∑
|zj |>r

∫
D(zj ,3δτ(zj))

∣∣f(w)− f(Φk(w))
∣∣p

epψ(w)
dm(w)

) q
p

. sup
|zj |>r

‖f‖q
Fψp

∫
D(zj ,δτ(zj))

eqψ(z)

τ(z)
2q
p

dµ(g,q)(z).
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In particular, for ‖f‖Fψp ≤ 1, then the right-hand quantity above is bounded

by

sup
j:|zj |>r

∫
D(zj ,δτ(zj))

eqψ(z)

τ(z)
2q
p

dµ(g,q)(z)

= sup
j:|zj |>r

∫
D(zj ,δτ(zj))

|g′(z)|qτ(z)−
2q
p(

1 + ψ′(z))
)q dm(z)

≤ sup
|w|>r

∫
D(w,δτ(w))

|g′(z)|qτ(z)−
2q
p(

1 + ψ′(z)
)q dm(z)

' sup
|w|>r

τ(w)−2

∫
D(w,δτ(w))

|g′(z)|qτ(z)−
2q
p +2(

1 + ψ′(z)
)q dm(z),

here the last estimate follows by Lemma 5 of [5], where it was proved that
τ(w) ' τ(z) whenever z belongs to D(w, δτ(w)). In addition, as Vg : Fψp → Fψq
is a bounded operator, Theorem 3 of [5] again ensures that the integrand in
the above last integral is uniformly bounded over C. Thus,

sup
|w|>r

τ(w)−2

∫
D(w,δτ(w))

|g′(z)|qτ(z)−
2q
p +2(

1 + ψ′(z)
)q dm(z)

. sup
|w|>r

|g′(w)|qτ(w)−
2q
p +2(

1 + ψ′(w)
)q = sup

|w|>r

|g′(w)|q
(
∆ψ(w)

) q−p
p(

1 + ψ′(w)
)q .(3.10)

We plan to show that the second sum in (3.9) tends to zero when k →∞. Then
since r is arbitrary, our upper estimate will follow from the series of estimates
we made from (3.8) to (3.10). To this end, as done before, making use of (3.7)
and Minkowski inequality, we proceed to estimate∑

j:|zj |≤r

(∫
D(zj ,3δτ(zj))

∣∣f(w)− f(Φk(w))
∣∣p

epψ(w)
dm(w)

) q
p

×
∫
D(zj ,δτ(zj))

eqψ(z)

τ(z)
2q
p

dµ(g,q)(z)

.

( ∑
j:|zj |≤r

∫
D(zj ,3δτ(zj))

|w|p
(

max|w|=2r |f(w)|
)p

r(k + 1)pepψ(w)
dm(w)

) q
p

×
∫
D(zj ,δτ(zj))

eqψ(z)

τ(z)
2q
p

dµ(g,q)(z).

Using the assumption on τ , we have

|w| ≤ |w − zj |+ |zj | ≤ r + δτ(zj) ≤ r + δ sup
zj

τ(zj) ≤Mr
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for some M > 0, from which we have that the preceding sum is bounded by

Mq‖f‖q
Fψp

(1 + k)q
sup
|zj |≤r

∫
D(zj ,δτ(zj))

|g′(z)|q

τ(z)
2q
p (1 + ψ′(z))q

dm(z)

.
τ(r)−2

(1 + k)q
sup
|zj |≤r

∫
D(zj ,δτ(zj))

τ(z)2|g′(z)|q

τ(z)
2q
p (1 + ψ′(z))q

dm(z)

.
τ(r)−2

(1 + k)q
sup
z∈C

(
τ(z)2|g′(z)|q

τ(z)
2q
p (1 + ψ′(z))q

)
sup
|zj |≤r

∫
D(zj ,δτ(zj))

dm(z)

.
τ(r)−2

(1 + k)q
sup
|zj |≤r

τ(zj)
2 ≤ 1

(1 + k)q
→ 0 as k →∞,

and, this completes the proof of part (i) of the theorem.
The proof of part (ii) is a simple variant of the proof of part (i). Thus, we

omit it, and leave it to interested readers.

References

[1] A. Aleman, A class of integral operators on spaces of analytic functions, in Topics in

complex analysis and operator theory, 3–30, Univ. Málaga, Málaga, 2007.
[2] B. J. Carswell, B. D. MacCluer, and A. Schuster, Composition operators on the Fock

space, Acta Sci. Math. (Szeged) 69 (2003), no. 3-4, 871–887.

[3] S. Chandrasekhar, Radiative Transfer, Oxford University Press, 1950.
[4] O. Constantin, A Volterra-type integration operator on Fock spaces, Proc. Amer. Math.

Soc. 140 (2012), no. 12, 4247–4257.
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