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NORMS FOR COMPACT OPERATORS
ON HILBERTIAN OPERATOR SPACES

DONG-YUN SHIN

ABSTRACT. For Hilbert spaces H, K, a compact operator T : H —
K, and column, row, operator Hilbert spaces H., K., Hr, Ky, Ho,
Ko, we show that || Teollco=Trollcs =|Tocllev=lTor llco= IITla-

1. Introduction

The theory of operator spaces and their completely bounded maps
has provided a powerful tool for studying operator algebras. In the
theory of operator space, bounded operators are replaced by com-
pletely bounded operators, isometries by complete isometries, and Ba-
nach spaces by operator spaces.

E. Effros and Z. J. Ruan, D. P. Blecher, D. Y. Shin, and G. Pisier
study Hilbert spaces as operator spaces. E. Effros and Z. J. Ruan [4],
D. P. Blecher [1] study column and row Hilbert spaces, and show that
H* =~ H, and H = H,, G. Pisier [6] studies the operator Hilbert
spaces and shows that H} = H,, and D. Y. Shin {7] studies column,
row and operator Hilbert spaces and shows that H; = H,, H = H,
and H} = H, differently.

Let T be a bounded linear operator from a Hilbert space H to a
Hilbert space K. We may induce a linear operator from the row Hilbert
space H, to the column Hilbert space K. defined by T,.(z) = T(z).
Similarly, we may induce Toc, Tee, Tery Lors Trry Leos Troy and Too.
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D. P. Blecher [1], E. Effros and Z.-J. Ruan [4], and D. Y. Shin (7]
lslhonvv that IITCCIICb - "Trr”‘:b = ”To"“d’ = ”T” and “Trc“cb = “Tcr”cb =
Tlls-
In this paper we show that ||Teolles = || Trolles = | Tocllee = ||Torllen
= ||T||4 for a compact operator.

2. Operator Spaces and Three Hilbertian Operator Spaces

Let E be a vector space over the complex field C, let M, (E) denote
the vector space of n X n matrices with entries from F, let M,, denote
the set of all n x n complex matrices with C*-norm.

For z = [z;;] € Mn(E), y = [yi;] € Ma(E), a = [aij], B = [By] €
M,,, we write

z@y= [g 2] € Min1n(B),

oz = [2;5), 28 = [wi;] € Mm(E),

where z;; = 371, 0upp; and wi; = 370, BpjTip. Here we use the
symbol 0 for a rectangular matrix of zero element over F.

If there is a norm || - ||, on M,(E) for each positive integer n, the
family of the norms {|| - [|»} is called a matrix norm on E. E is called
a space with a matrix norm. If there no danger of confusion, we set
-l =1-lln-

A space F with a matrix norm is called an operator space if for «,
BE M, x € M,(F), it satisfies the following :

(1) lezBlin < lla ll|i. |5l

(2) £ © Yllm+n = max{||z|im, [|ylln}

A subspace of an operator space as a vector space is also operator

space.
n times

e,
If H is a Hilbert space, we set H® = H&®---® H. Let B(H,K)
denote the set of all bounded linear operators from a Hilbert space H
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to a Hilbert space K and B(H) = B(H, H). We may identify B(H™)
with M,,(B(H)). Then B(H) is an operator space.

Suppose that E and F are operator spaces and ¢ : E — F'is a linear
map. We define the map ¢, : M,(E) — M, (F) by ¢n([zi;]) = [¢(z:;)]
for [z;;] € Mn(E). We write ||¢lls = sup{||¢nl| : n € N}, where
#nll = sup{llpn(z)| : = € Mn(E),||z|| = 1}. We call ¢ completely
bounded if ||¢|lcs < 00. We call ¢ a complete isometry if for every
positive integer n, ¢ : Mp(E) — M, (F) is an isometry.

Let CB(E, F) denote the set of all completely bounded linear maps
from E to F and CB(F) = CB(E, E). If we identify M,(CB(E, F))
with CB(E, M, (F)) for every positive integer n, then the normed space
CB(E, F) with this matrix norm becomes an operator space. Since
every bounded linear functional is completely bounded with the same
norm, we may identify B(E, C) and CB(E, C). With this identification,
B(E,C) becomes an operator space. We call this the operator space
dual of E, and denote it by E*.

Two operator spaces are completely isometrically isomorphic if there
is a complete isometry of the first space onto the second.

Let C™ be the n- dimensional, canonical Hilbert space. Given Hilbert
space H, we may identify M, (H) with B(C™,H™) for every positive
integer n. Then the Hilbert space H with this matrix norm can be an
operator space which is called a column Hilbert space and is indicated
by H. and the norm on M,(H,) is indicated by || - ||c. Secondly, we may
identify M,,(H) with B(H™,C™) for n € N. This gives an operator space
structure on H, which is called a row Hilbert space and is indicated by
H, and the norm on M, (H,) is indicated by || - ||,.

G. Pisier [6] shows the following :

THEOREM 1. For any index set I, there is a Hilbert space H and an
operator space OH(I) included in B(H) such that

(a) OH(I) is isometric to l(I) as a Banach space,

(b) the canonical identification between OH(I) and OH(I)* (corre-
sponding to the canonical identification between ly(I) and lo(I)*) is
completely isometric.

Moreover, the space OH(I) is the unique operator space (up to com-
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plete isometry) possessing these properties (a) and (b).

This operator space OH () is called an operator Hilbert space. Hence
given Hilbert space H, we can give it the operator Hilbert space struc-
ture. This operator Hilbert space is denoted by H, and the norm on
M, (H,) is indicated by || - |o.

We say that an operator space E is Hilbertian if the underlying space
F is isomorphic to a Hilbert space.

Let {E[:J} denote the standard matrix units for My, that is, E; is
1 in the (2, j)-entry and 0 elsewhere.

Let a = [a;;] and ¢ be n x n matrices, let b and d be m x m matrices,
and let a ® b be the mn x mn matrix [a;;b]. Then (a ® b)* = a* ® b*,
a®b+a®d=a®(b+d),a®b+c®b=(a+c)®b, [a®b|| = ||alll|2],
(a®b)(c® d)=ac® bd, and E}; ® Ey=EG" |y k(i 1ym+i-

For an orthonormal basis {e;}icr of H and z = [zx] € Mn(H)
with T = 3, 78,e, we set z; = [z};] € M,,. We formally write z=
> icrTi€i- For a = [an] € My, we denote @ = [axi], where @y is the
complex conjugation of ax;.

D. Y. Shin [7] shows the following.

THEOREM 2. For x=Y, ,ziei € My(H), we have |z|.
= Tierztmill, Izl = | Ticszetl?, and lallo = || Ciey = @ F:ll2.

For H = C™, we set Cp, = C*, Ry, = C*, Oy, = CJ.

PROPOSITION 3. Let E = {3°72 @B : a; € C} C My, let F =
{>ie a:E : a; € C} € My, and let {e;}]~; be the canonical basis
for C™. Let ¢ : Cp, — E defined by ¢(} 1=, aiei) => ;=i a:E]y, and
let ¢ : Ry, — F defined by ¥(3 i~ aie;) =) ;- a;E. Then ¢ and ¢
are complete isometries.

Proof. Let a = [a;;] € My, b = [br1] € My,. Then we have a ® b=

Y im1 Loka=1 GO ET ) ik (j-1)ym4t- Hence, for @ = S Tie; €
M, (Cy,), we have ¢,(z)= Zf=1 z; ® E; 1. By elementary calculation,

I(Cr, = ® Ein)* (e 25 ® ER)ll= 1 7=1 %7z ® ETETl=

| iz #i s ® ETY||= || 2252, #fill=||z]|c namely, [zl = |I¢n(z)]]-
Hence ¢ is a complete isometry. Similarly, we can show that % is
complete isometry. O
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3. Main Results

For Hilbert spaces H, K and a compact operator 7' : H — K,
|T| = (T*T)%, there is an orthonormal basis {e;}ic; for H and non-
negative real numbers A; (i € I) such that |T|(e;) = Aie;. Put |T)|4 =
(Zier M)%. It can be infinite.

LEMMA 4. Let {e;}?, be the canonical basis for C™, let A; be non-
negative real numbers for 1 < i < n, and let T : C™ — C™ be a linear
map with T(e;)=Aie;. Then ||Teollco=||Trollet =||Tocllct=||Torllcs=|T |ls-

Proof. By Proposition 3, R, can be identified with {37, a;E}; :
a; € C} C M,,. Hence we have [|Tor]|ls=l| "7 ; }E1; ® NEnli# by [6,
Proposition 1.4] and by elementary caculations || >_" ; A;Ey; ® A Eni||?
=(37_; M)%. Therefore | Torllo = (3-7y A#)%. Similarly we can show
that || Tocllco=]|T|l4. Since R;=C,, C;=R,, O;,=0,, and A; are non-
negative real numbers for 1 < ¢ < n, we have T}, =T¢,, T).=T,,. Hence
|Teollct= | Twollce =|IT|l4 by [2, Proposition 2.3]. a

LEMMA 5. For non-negative real numbers A; for 1 < i < n and
z; € My, the following hold.
(1) Il iy 5l = 1, then | Siy Mz ® Xeail| < (T M3 In
particular, if k > n, then
n 1 n N n *
(> iz '\?)"‘ = sup{|| X_i=; Xz ® Nzl ¢ || 205, wia|| = 1}
2) Il Ty @erill =1, then || X7; Mz @ Nzil| < (Xiey A% In
particular, if k > n, then .
n 1 n I n *
(Zi=1 )‘?) 7= sup{|| 21‘:1 Aizi @ Azl : || Zi=1 zixi| = 1}1-
B) If | X, 2 ® Tl = 1, then || Y0, Matai| < (37, Af)2. In
particular, if k > n, then
n 1 n * n —_
(21’:1 ’\;'1)’ = sup{l| >;_; ’\?“”i zil| : || 3oin; 7 ® T = 1}
(4) If| Sr, = @ Tl = 1, then | iy Moz} || < (X7, M)E. In
particular, if k > n, then
(T A7 =sup{|| i, Mz} : || Ticy 2 @ Tl = 1}

Proof. Let {e;}]-, be the canonical basis for C™ and T : C* — C™
be a linear map with T'(e;)=\;e;. Then by Lemma 4, ||Tpo|ce=|T|l4-
Let Tyo= ¢. Then for a positive integer k, ¢ : Mi(R,) — My(O,) and
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Sy Ties € Mi(Rn), || S0, Miws ® izl i= || i, Mizieillo by The-
orem 2 and || 31, Mizieillo =1 Y1 du(zies) o< ([@llenll iy zi€illr

For k > mn, putting z; = Ef, we have |Y o zlzi|| = 1
and || 30, iz @ Az = (T A9 %. Hence (1) holds. Similarly we
can show the others. O

LEMMA 6. Let H be a Hilbert space, let {e;}ic; be an othonor-
mal basis for H, let A\; (i € I) be non-negative real numbers, and let
T : H — H be a linear map with T(e;)=M;e;. Then ||Teollco=||Trollct
=N Toclleb=lTor llco= I|Tls-

Proof. Let x =) . zie; € Mi(H) and let J be a finite subset of I.
By Lemma 5, we have || 3, ; Aizi ®_XE|| < (Cics M) iyt
Hence || Ysc; M ® Neaill < (i, M) T 7:ll. Therefore || Tl
< ||T||4. For fixed k,l (I < k) and a subset J={¢,---,4;}C I, we set
gy, =EF,, -z = Ef,andfori ¢ J,z; = 0. Then || Y, z}zil = 1
and || ;e Mizi@Nil| = (e Af) % . Hence ||Tuo|| > [|T|4 and [|Teol|=
IIT||4. Similarly we can show that ||Ty.|| = ||T|4 and by the same reason
in the proof of Lemma 4, ||Toc|l=||Tor||=/T 4. : O

THEOREM 7. Let H, K be Hilbert spaces and let T : H — K be a
compactor operator. Then ||Teol|co=ITrollct =Tocllet=||Torllce=I|T||4-

Proof. Let T = U|T| be the polar decomposition of T. Then U*T=|T|
and there is an orthonormal basis {e;};c; of H and non-negative real
numbers A; (¢ € I) such that |T'|(e;)=M\;e;. Hence by Lemma 6 we have

T loe leo=1l 1T la=IITla.

ITloc Uge

Since T, : H, — K, is decomposed H, H. —= K., we
have || Tocller < ” ITIOC ”cb”U”—”T”4 and since |T|oc : H, — H, is
decomposed H, —% K. — H, we have || |T|oc ||cb < ||Toc||c»- Hence
1Toclles =|IT |4 Slrmlarly we can show the others. 0O
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