• Title/Summary/Keyword: Compact Operators

Search Result 136, Processing Time 0.022 seconds

ON THE RELATION BETWEEN COMPACTNESS AND STRUCTURE OF CERTAIN OPERATORS ON SPACES OF ANALYTIC FUNCTIONS

  • ROBATI, B. KHANI
    • Honam Mathematical Journal
    • /
    • v.23 no.1
    • /
    • pp.29-39
    • /
    • 2001
  • Let $\mathcal{B}$ be a Banach space of analytic functions defined on the open unit disk. Assume S is a bounded operator defined on $\mathcal{B}$ such that S is in the commutant of $M_zn$ or $SM_zn=-M_znS$ for some positive integer n. We give necessary and sufficient condition between compactness of $SM_z+cM_zS$ where c = 1, -1, i, -i, and the structure of S. Also we characterize the commutant of $M_zn$ for some positive integer n.

  • PDF

ALTERNATIVE PROOF OF EXISTENCE THEOREM FOR CERTAIN COMPETITION MODELS

  • Ahn, Inkyung
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.119-130
    • /
    • 2000
  • We give alternative proof of the existence theorem for certain elliptic systems describing competing interactions with nonlinear di usion. The existence of positive solution depends on the sign of the principal eigenvalue of suitable operators of Schr$\ddot{o}$dinger type. If the sign of such operators are both positive, then system has a positive solution. The main tool employed is the fixed point index of compact operator on positive cones.

  • PDF

SEQUENCE SPACES OF OPERATORS ON l2

  • Rakbud, Jitti;Ong, Sing-Cheong
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.6
    • /
    • pp.1125-1142
    • /
    • 2011
  • In this paper, we define some new sequence spaces of infinite matrices regarded as operators on $l_2$ by using algebraic properties of such the matrices under the Schur product multiplication. Some of their basic properties as well as duality and preduality are discussed.

DISJOINT SUPERCYCLIC WEIGHTED COMPOSITION OPERATORS

  • Liang, Yu-Xia;Zhou, Ze-Hua
    • Bulletin of the Korean Mathematical Society
    • /
    • v.55 no.4
    • /
    • pp.1137-1147
    • /
    • 2018
  • In this paper, we discovered a sufficient condition ensuring the weighted composition operators $C_{{\omega}_1,{\varphi}_1},{\cdots},C_{{\omega}_N,{\varphi}_N}$ were disjoint supercyclic on $H({\Omega})$ endowed with the compact open topology. Besides, we provided a condition on inducing symbols to guarantee the disjoint supercyclicity of non-constant adjoint multipliers $M^*_{{\varphi}_1},M^*_{{\varphi}_2},{\cdots},M^*_{{\varphi}_N}$ on a Hilbert space ${\mathcal{H}}$.

COUPLED FIXED POINT THEOREMS WITH APPLICATIONS

  • Chang, S.S.;Cho, Y.J.;Huang, N.J.
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.575-585
    • /
    • 1996
  • Recently, existence theorems of coupled fixed points for mixed monotone operators have been considered by several authors (see [1]-[3], [6]). In this paper, we are continuously going to study the existence problems of coupled fixed points for two more general classes of mixed monotone operators. As an application, we utilize our main results to show thee existence of coupled fixed points for a class of non-linear integral equations.

  • PDF

ON THE TAYLOR-BOWDER SPECTRUM

  • Jeon, In-Ho;Lee, Woo-Young
    • Communications of the Korean Mathematical Society
    • /
    • v.11 no.4
    • /
    • pp.997-1002
    • /
    • 1996
  • In this paper we extend the Zemanek's characterization of the Browder spectrum for a commuting n-tuple operators in $L(H)$ and show that if $T = (T_1, \cdots, T_n)$ is Browder then there exists an n-tuple $K = (K_1, \cdots, K_n)$ of compact operators and an invertible commuting n-tuple $(S_1, \cdots, S_n)$ for which $T = S + K$ and $S_i K_j = K_j S_i$ for all $1 \leq i, j \leq n$.

  • PDF

ELLIPTIC SYSTEMS INVOLVING COMPETING INTERACTIONS WITH NONLINEAR DIFFUSIONS II

  • Ahn, In-Kyung
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.4
    • /
    • pp.869-880
    • /
    • 1997
  • In this paper, we give sufficient conditions of certain elliptic systems involving competing iteractions with nonlinear diffusion rates. The existence of positive solution depends on the sign of the first eigenvalue of operators of Schr$\ddot{o}$dinger type. More precisely, if the sign of such operators are either both positive or both negative, then system has a positive solution. The main tool employed is the fixed point index of compact operator on positive cones.

  • PDF

EXISTENCE RESULTS FOR NEUTRAL FUNCTIONAL INTEGRODIFFERENTIAL EQUATIONS WITH INFINITE DELAY IN BANACH SPACES

  • Chandrasekaran, S.;Karunanithi, S.
    • Journal of applied mathematics & informatics
    • /
    • v.33 no.1_2
    • /
    • pp.45-60
    • /
    • 2015
  • This paper is concerned with the existence of mild solutions for partial neutral functional integrodifferential equations with infinite delay in Banach spaces. The results are obtained by using resolvent operators and Krasnoselski-Schaefer type fixed point theorem. An example is provided to illustrate the results.