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SEQUENCE SPACES OF OPERATORS ON l2

Jitti Rakbud and Sing-Cheong Ong

Abstract. In this paper, we define some new sequence spaces of infinite
matrices regarded as operators on l2 by using algebraic properties of such

the matrices under the Schur product multiplication. Some of their basic
properties as well as duality and preduality are discussed.

1. Introduction

Let 1 ≤ p, q < ∞. For any infinite scalar matrix A = [ajk], we say that A
defines a linear operator from lp into lq if for each x = {xk}∞k=1 in lp the series∑∞

k=1 ajkxk converges for all j, and the sequence Ax := {
∑∞

k=1 ajkxk}∞j=1

belongs to lq. In this circumstance, we call the linear operator x 7→ Ax the
linear operator defined by A. If A defines a linear operator from lp into lq,
then by the uniform boundedness principle, the linear operator defined by A
is bounded. For each 1 ≤ p, q < ∞, let B(lp, lq) be the set of all infinite
matrices defining linear operators from lp into lq. In the case where p = q,
we denote B(lp, lp) by just B(lp). For any matrix A, we define ∥A∥p,q to be

the norm of the linear operator defined by A if A ∈ B(lp, lq), and to be ∞
otherwise. It is well known that B(lp, lq) equipped with the norm ∥·∥p,q is a
Banach space. In fact, it is exactly the set of matrix representations of all
bounded linear operators from lp into lq with respect to the standard Schauder
bases on lp and lq. For any matrix A, we call A bounded if A ∈ B(lp, lq) and
unbounded otherwise. It is known that a matrix A belongs to B(lp, lq) if and
only if supn ∥An⌟∥p,q < ∞, where An⌟ is the matrix whose entries in the upper
left n× n-block are exactly those of A and are zero otherwise, and also known
that for any matrix A, ∥An⌟∥p,q ↗ ∥A∥p,q. A matrix A is said to be compact
if the linear operator defined by A is compact. It is well known that a matrix
A is compact as an operator on l2 if and only if ∥An⌟ −A∥2,2 → 0, which is

equivalent to
∥∥An −A

∥∥
2,2

→ 0, where An is the matrix which agrees with A

on the first n rows and are 0 on all other entries.
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The Schur product (also known as the Hardamard product or entry-wise
product) of two scalar matrices A = [ajk] and B = [bjk] of the same size is
the matrix A •B := [ajkbjk]. In [6], Schur proved that B(l2) is a commutative
Banach algebra under the operator norm and the Schur product. In [1], G.
Bennett extended the result from the study of Schur mentioned above. He
proved that for each 1 ≤ p, q < ∞, B(lp, lq) is also a Banach algebra under
the Schur product. In [2] P. Chaisuriya and S.-C. Ong studied the class of
matrices over any Banach algebra with identity. In that paper, for a fixed
Banach algebra B with identity and 1 ≤ p, q, r < ∞, the authors defined
the class Sr

p,q(B) of matrices A = [ajk] over B such that the absolute Schur

rth-power A[r] := [∥ajk∥r] defines a linear operator from lp into lq. And they
proved that it is a Banach algebra under the the absolute Schur r-norm defined

by ∥|A|∥p,q,r =
∥∥A[r]

∥∥1/r
p,q

and the Schur product which is generalized to this

setting via the product in the Banach algebra B. The authors also gave a nice
relationship between the class B(lp, lq) of all bounded operators and the algebra
S2
p,q(C). They found that S2

p,q(C) contains B(lp, lq) as a non-closed ideal.
In this paper, we provide some reasonable ways to define sequence spaces of

matrices in the Banach algebra S2
2,2(C) which from the results in [2] mentioned

above contains all bounded matrices (or operators on l2) as an ideal and also
contains some unbounded ones. The pleasant structure of the algebra S2

2,2(C)
may provide us with a reasonable way of studying simultaneously bounded and
unbounded matrices (as operators on l2) in these new settings sequentially.

2. Definitions and some basic properties

In this section we introduce some new sequence spaces of matrices and dis-
cuss some of their basic properties. Before going to the goal, we need some
preliminary results about the Banach algebra S2

2,2(C). For convenience, we de-
note here the Banach algebra Sr

2,2(C) for r = 1, 2 by just Sr, the norm ∥|·|∥2,2,2
on S2 by ∥|·|∥2, the norm ∥·∥2,2 on B(l2) by ∥·∥, and the matrix A[1] by |A|.

The following Cauchy-Schwarz-type inequality was first introduced in [5] by
S.-C. Ong and extended in [2].

Theorem 2.1 (Cauchy-Schwarz-type inequality). For any infinite scalar ma-
trices A and B, ∥|A •B|∥ ≤ ∥|A|∥2 ∥|B|∥2 .

From the Cauchy-Schwarz-type inequality, the following proposition which
is useful for the paper is obtained.

Proposition 2.2. S2 • S2 := {A •B : A,B ∈ S2} = S1.

Proof. If A,B ∈ S2, then by Theorem 2.1, A • B ∈ S1. If A = [ajk] ∈ S1,

then both B =
[
|ajk|1/2

]
and C =

[
|ajk|1/2ei(arg(ajk))

]
belong to S2 and A =

B • C. □
The following lemma is also a consequence of the Cauchy-Schwarz-type in-

equality.
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Lemma 2.3. For any A,B ∈ S2,∥∥∥∣∣∣A[2] −B[2]
∣∣∣∥∥∥ ≤ (∥|A|∥2 + ∥|B|∥2) ∥|A−B|∥2 .

Proof. By the Cauchy-Schwarz-type inequality, we obtain∥∥∣∣A[2] −B[2]
∣∣∥∥ = ∥||A| − |B|| • (|A|+ |B|)∥

≤ ∥|A−B| • (|A|+ |B|)∥
≤ ∥|A−B|∥2 ∥||A|+ |B||∥2
≤ (∥|A|∥2 + ∥|B|∥2) ∥|A−B|∥2 .

The proof is complete. □
Proposition 2.4. The map A 7→ A[2] from S2 into B(l2) is continuous.

Proof. Suppose that An → A in S2. Then there exists M > 0 such that
∥|A|∥2 ≤ M and ∥|An|∥2 ≤ M for all n. So, by Lemma 2.3,∥∥∥A[2]

n −A[2]
∥∥∥ ≤

∥∥∥∣∣∣A[2]
n −A[2]

∣∣∣∥∥∥ ≤ 2M ∥|An −A|∥2 → 0.

It follows that the map A 7→ A[2] is continuous. □
From the structure of the Banach algebra S2, we can reasonably define

spaces of sequences of matrices acting as operators on l2 as follows:

Ob =

{
{Ak}∞k=1 ⊂ S2 : the sequence

{
n∑

k=1

A
[2]
k

}∞

n=1

is bounded in B(l2)

}
;

Oc =

{
{Ak}∞k=1 ⊂ S2 : the sequence

{
n∑

k=1

A
[2]
k

}∞

n=1

converges in B(l2)

}
.

In the following theorem, we obtain a simple characterization of the set Ob.

Theorem 2.5. (1) A sequence {[a(k)ji ]}∞k=1 belongs to Ob if and only if the

matrix [
∑∞

k=1 |a
(k)
ji |2] belongs to B(l2).

(2) If {Ak = [a
(k)
ji ]}∞k=1 belongs to Ob, then∥∥∥∥∥

[ ∞∑
k=1

∣∣∣a(k)ji

∣∣∣2]∥∥∥∥∥ = sup
n

∥∥∥∥∥
n∑

k=1

A
[2]
k

∥∥∥∥∥ .
Proof. (1) Suppose that a sequence {Ak = [a

(k)
ji ]}∞k=1 belongs to Ob. Then

for each (j, i), the series
∑∞

k=1 |a
(k)
ji |2 converges. Let A = [

∑∞
k=1 |a

(k)
ji |2], let

M = supK

∥∥∥∑K
k=1 A

[2]
k

∥∥∥, and let x = {xi}∞i=1 ∈ l2 with ∥x∥2 ≤ 1. Then for

each fixed n, we have by Minkowsi’s inequality for scalar sequences that

∥An⌟x∥2 =


n∑

j=1

∣∣∣∣∣
n∑

i=1

∞∑
k=1

∣∣∣a(k)ji

∣∣∣2 xi

∣∣∣∣∣
2


1/2
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≤


n∑

j=1

(
n∑

i=1

∣∣∣∣∣
K∑

k=1

∣∣∣a(k)ji

∣∣∣2 − ∞∑
k=1

∣∣∣a(k)ji

∣∣∣2∣∣∣∣∣ |xi|

)2


1/2

+


n∑

j=1

(
n∑

i=1

∣∣∣∣∣
K∑

k=1

∣∣∣a(k)ji

∣∣∣2∣∣∣∣∣ |xi|

)2


1/2

≤


n∑

j=1

(
n∑

i=1

∣∣∣∣∣
K∑

k=1

∣∣∣a(k)ji

∣∣∣2 − ∞∑
k=1

∣∣∣a(k)ji

∣∣∣2∣∣∣∣∣ |xi|

)2


1/2

+

∥∥∥∥∥∥
(

K∑
k=1

A
[2]
k

)
n⌟

∥∥∥∥∥∥
≤


n∑

j=1

(
n∑

i=1

∣∣∣∣∣
K∑

k=1

∣∣∣a(k)ji

∣∣∣2 − ∞∑
k=1

∣∣∣a(k)ji

∣∣∣2∣∣∣∣∣ |xi|

)2


1/2

+

∥∥∥∥∥
K∑

k=1

A
[2]
k

∥∥∥∥∥
≤


n∑

j=1

(
n∑

i=1

∣∣∣∣∣
K∑

k=1

∣∣∣a(k)ji

∣∣∣2 − ∞∑
k=1

∣∣∣a(k)ji

∣∣∣2∣∣∣∣∣ |xi|

)2


1/2

+M for all K.

Thus, by taking the limit as K → ∞, we have for each n that ∥An⌟x∥2 ≤ M for
all x ∈ l2 with ∥x∥2 ≤ 1. It follows that ∥An⌟∥ ≤ M for all n. Consequently,
A ∈ B(l2). The converse is obvious.

(2) It is clear that supK

∥∥∥∑K
k=1 A

[2]
k

∥∥∥ ≤
∥∥∥[∑∞

k=1 |a
(k)
ji |2]

∥∥∥. Suppose to the

contrary that supK

∥∥∥∑K
k=1 A

[2]
k

∥∥∥ <
∥∥∥[∑∞

k=1 |a
(k)
ji |2]

∥∥∥ . Then there is a positive

integer n0 and an x ∈ l2 with ∥x∥2 ≤ 1 such that

sup
K

∥∥∥∥∥
K∑

k=1

A
[2]
k

∥∥∥∥∥ <

∥∥∥∥∥∥
[ ∞∑
k=1

∣∣∣a(k)ji

∣∣∣2]
n0⌟

|x|

∥∥∥∥∥∥
2

.

This implies that there exists a positive integer K0 such that∥∥∥∥∥∥
(

K0∑
k=1

A
[2]
k

)
n0⌟

∥∥∥∥∥∥ ≤

∥∥∥∥∥
K0∑
k=1

A
[2]
k

∥∥∥∥∥ ≤ sup
K

∥∥∥∥∥
K∑

k=1

A
[2]
k

∥∥∥∥∥ <

∥∥∥∥∥∥
(

K0∑
k=1

A
[2]
k

)
n0⌟

|x|

∥∥∥∥∥∥
2

,

which is a contradiction. Hence

sup
K

∥∥∥∥∥
K∑

k=1

A
[2]
k

∥∥∥∥∥ =

∥∥∥∥∥
[ ∞∑
k=1

∣∣∣a(k)ji

∣∣∣2]∥∥∥∥∥ .
The proof is finished. □

It is apparent that Oc ⊆ Ob. The inclusion is proper, indeed, the sequence
of matrices Ak with (k, k)-entry 1 and all other entries zero belongs to Ob but
doesn’t belong to Oc.

In the following proposition, we give some sufficient conditions for a sequence
in S2 to be a member of Oc.
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Proposition 2.6. (1) If {Ak}∞k=1 is a sequence in B(l2) with
∑∞

k=1 ∥Ak∥2 <
∞, then {Ak}∞k=1 belongs to Oc.

(2) If {Ak = [a
(k)
ji ]}∞k=1 is a sequence in S2 such that the matrix [

∑∞
k=1 |a

(k)
ji |2]

is compact, then {Ak}∞k=1 belongs to Oc.

Proof. (1) It follows immediately from Schur-Bennett’s theorem in [1, 6]: B(l2)
is a Banach algebra under the Schur product.

(2) Let A = [
∑∞

k=1 |a
(k)
ji |2], and let ϵ > 0. Then by the compactness of the

matrix A, there is a positive integer N such that ∥AN⌟ −A∥ < ϵ
3 . Since the

series
∑∞

k=1 |a
(k)
ji |2 converges for all 1 ≤ j, i ≤ N , there is a positive integer K0

such that for each 1 ≤ j, i ≤ N ,
∞∑

k=K

∣∣∣a(k)ji

∣∣∣2 <
ϵ

3N3/2
for all K ≥ K0.

It follows that∥∥∥∥∥
K∑

k=1

A
[2]
k −A

∥∥∥∥∥ ≤

∥∥∥∥∥∥AN⌟ −

(
K∑

k=1

A
[2]
k

)
N⌟

∥∥∥∥∥∥+
∥∥∥∥∥∥
(

K∑
k=1

A
[2]
k

)
N⌟

−
K∑

k=1

A
[2]
k

∥∥∥∥∥∥
+ ∥AN⌟ −A∥

≤


N∑
j=1

(
N∑
i=1

∞∑
k=K

∣∣∣a(k)ji

∣∣∣2)2


1/2

+ 2 ∥AN⌟ −A∥

<
ϵ

3
+

2ϵ

3
= ϵ for all K ≥ K0.

Consequently, {Ak}∞k=1 ∈ Oc. □

For any A = {Ak = [a
(k)
ji ]}∞k=1 ∈ Ob, we define

∥|A|∥ :=

(
sup
n

∥∥∥∥∥
n∑

k=1

A
[2]
k

∥∥∥∥∥
)1/2

=

∥∥∥∥∥
[ ∞∑
k=1

∣∣∣a(k)ji

∣∣∣2]∥∥∥∥∥
1/2

.

It is obvious that ∥|Ak|∥2 ≤ ∥|A|∥ for all k. In the case where A ∈ Oc, we have

∞∑
k=1

A
[2]
k =

[ ∞∑
k=1

∣∣∣a(k)ji

∣∣∣2] .
Hence we obtain in this case

∥|A|∥ =

∥∥∥∥∥
∞∑
k=1

A
[2]
k

∥∥∥∥∥
1/2

.

From Proposition 2.2, the following Cauchy-Schwarz’s inequality for n-tuples
of matrices in S2 makes sense.
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Theorem 2.7 (Cauchy-Schwarz’s inequality). For any two n-tuples (A1,A2, . . .,
An) and (B1, B2, . . . , Bn) of matrices in S2,∥∥∥∥∥

n∑
k=1

Ak •Bk

∥∥∥∥∥ ≤

∥∥∥∥∥
∣∣∣∣∣

n∑
k=1

Ak •Bk

∣∣∣∣∣
∥∥∥∥∥ ≤

∥∥∥∥∥
n∑

k=1

|Ak •Bk|

∥∥∥∥∥
≤

∥∥∥∥∥
n∑

k=1

A
[2]
k

∥∥∥∥∥
1/2 ∥∥∥∥∥

n∑
k=1

B
[2]
k

∥∥∥∥∥
1/2

.

Proof. Suppose that Ak = [a
(k)
ji ] and Bk = [b

(k)
ji ] for all k = 1, 2, . . . , n. Then

we have by Cauchy-Schwarz’s inequality for scalar sequences and Cauchy-
Schwarz’s inequality for matrices that∥∥∥∥∥

n∑
k=1

|Ak •Bk|

∥∥∥∥∥ =

∥∥∥∥∥
[

n∑
k=1

∣∣∣a(k)ji b
(k)
ji

∣∣∣]∥∥∥∥∥
≤

∥∥∥∥∥∥
( n∑

k=1

∣∣∣a(k)ji

∣∣∣2)1/2( n∑
k=1

∣∣∣b(k)ji

∣∣∣2)1/2
∥∥∥∥∥∥

=

∥∥∥∥∥∥
( n∑

k=1

∣∣∣a(k)ji

∣∣∣2)1/2
 •

( n∑
k=1

∣∣∣b(k)ji

∣∣∣2)1/2
∥∥∥∥∥∥

≤

∥∥∥∥∥
[

n∑
k=1

∣∣∣a(k)ji

∣∣∣2]∥∥∥∥∥
1/2 ∥∥∥∥∥

[
n∑

k=1

∣∣∣b(k)ji

∣∣∣2]∥∥∥∥∥
1/2

=

∥∥∥∥∥
n∑

k=1

A
[2]
k

∥∥∥∥∥
1/2 ∥∥∥∥∥

n∑
k=1

B
[2]
k

∥∥∥∥∥
1/2

.

The other two inequalities on the left-hand side are evident, and hence the
proof is finished. □

From Cauchy-Schwarz’s inequality above, the corresponding Minkowski’s
inequality is obtained.

Theorem 2.8 (Minkowski’s inequality). For any two n-tuples (A1, A2, . . . , An)
and (B1, B2, . . . , Bn) of matrices in S2,∥∥∥∥∥

n∑
k=1

(Ak +Bk)
[2]

∥∥∥∥∥
1/2

≤

∥∥∥∥∥
n∑

k=1

A
[2]
k

∥∥∥∥∥
1/2

+

∥∥∥∥∥
n∑

k=1

B
[2]
k

∥∥∥∥∥
1/2

.

Proof. From Cauchy-Schwarz’s inequality, we have∥∥∥∥∥
n∑

k=1

(Ak +Bk)
[2]

∥∥∥∥∥ =

∥∥∥∥∥
n∑

k=1

Ak +Bk • (Ak +Bk)

∥∥∥∥∥
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=

∥∥∥∥∥
n∑

k=1

(Ak +Bk) • (Ak +Bk)

∥∥∥∥∥
=

∥∥∥∥∥
n∑

k=1

Ak • (Ak +Bk) +

n∑
k=1

Bk • (Ak +Bk)

∥∥∥∥∥
≤

∥∥∥∥∥
n∑

k=1

Ak • (Ak +Bk)

∥∥∥∥∥+
∥∥∥∥∥

n∑
k=1

Bk • (Ak +Bk)

∥∥∥∥∥
≤

∥∥∥∥∥
n∑

k=1

A
[2]
k

∥∥∥∥∥
1/2 ∥∥∥∥∥

n∑
k=1

(Ak +Bk)
[2]

∥∥∥∥∥
1/2

+

∥∥∥∥∥
n∑

k=1

B
[2]
k

∥∥∥∥∥
1/2 ∥∥∥∥∥

n∑
k=1

(Ak +Bk)
[2]

∥∥∥∥∥
1/2

=

∥∥∥∥∥
n∑

k=1

A
[2]
k

∥∥∥∥∥
1/2

+

∥∥∥∥∥
n∑

k=1

B
[2]
k

∥∥∥∥∥
1/2
∥∥∥∥∥

n∑
k=1

(Ak +Bk)
[2]

∥∥∥∥∥
1/2

,

where C := [cjk] for any matrix C = [cjk]. It follows that∥∥∥∥∥
n∑

k=1

(Ak +Bk)
[2]

∥∥∥∥∥
1/2

≤

∥∥∥∥∥
n∑

k=1

A
[2]
k

∥∥∥∥∥
1/2

+

∥∥∥∥∥
n∑

k=1

B
[2]
k

∥∥∥∥∥
1/2

.

The proof is complete. □

Now we have the Riesz-Fischer-type theorem.

Theorem 2.9. Both Oc and Ob equipped with the norm ∥|·|∥ are Banach spaces.

Proof. From Minkowski’s inequality, both Ob and Oc equipped with the norm
∥|·|∥ are normed spaces. To see that Ob is a Banach space, let{

An =
{
A

(n)
k

}∞

k=1

}∞

n=1

be a Cauchy sequence in Ob. For each k, we have∥∥∥∣∣∣A(n)
k −A

(m)
k

∣∣∣∥∥∥
2
≤ ∥|An −Am|∥ for all n,m.

This implies that the sequence {A(n)
k }∞n=1 is a Cauchy sequence in S2 for all

k. Thus, by completeness of S2, there is Ak in S2 such that A
(n)
k → Ak. Let

A = {Ak}∞k=1, we will show that A ∈ Ob and An → A. To see these, let ϵ > 0.
Then there exists a positive integer N such that for each positive integer K,

(∗)

∥∥∥∥∥
K∑

k=1

(
A

(n)
k −A

(m)
k

)[2]∥∥∥∥∥
1/2

≤ ∥|An −Am|∥ <
ϵ

2
for all n,m ≥ N.
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Since A
(m)
k → Ak in S2 for all k, it follows for each fixed n that A

(n)
k −A

(m)
k →

A
(n)
k − Ak in S2 for all k. Thus, by Proposition 2.4, we have for each fixed n

that (A
(m)
k −A

(n)
k )[2] → (A

(n)
k −Ak)

[2] in B(l2) for all k. Hence, for each fixed

n and K,
∑K

k=1(A
(n)
k −A

(m)
k )[2] →

∑K
k=1(A

(n)
k −Ak)

[2] in B(l2). Therefore, by
taking the limits as m → ∞ on both sides of (∗), we have, for each n ≥ N , by
the continuity of the operator norm on B(l2) that∥∥∥∥∥

K∑
k=1

(
A

(n)
k −Ak

)[2]∥∥∥∥∥
1/2

≤ ϵ

2
for all K ≥ 1.

Consequently,
∥|An −A|∥ < ϵ for all n ≥ N.

From this, we obtain that AN − A belongs to Ob, which implies that A =
AN − (AN −A) belongs to Ob. It follows that An → A, thus (Ob, ∥|·|∥) is a
Banach space.

To see that Oc is a Banach space, suppose that {An = {A(n)
k }∞k=1}∞n=1 is a

sequence in Oc converging to a point A = {Ak}∞k=1 in Ob. We will show that
A ∈ Oc. To see this, let ϵ > 0 be given. Then there exists a positive integer

N such that ∥|AN −A|∥ <
√
ϵ

2 . Since AN ∈ Oc, there is a positive integer K
such that ∥∥∥∥∥

µ∑
k=ν

(
A

(N)
k

)[2]∥∥∥∥∥ <
ϵ

4
for all µ > ν > K.

Thus, by Minkowski’s inequality,∥∥∥∥∥
µ∑

k=ν

A
[2]
k

∥∥∥∥∥ =

∥∥∥∥∥
µ∑

k=ν

((
A

(N)
k −Ak

)
+A

(N)
k

)[2]∥∥∥∥∥
≤

∥∥∥∥∥
µ∑

k=ν

(
A

(N)
k −Ak

)[2]∥∥∥∥∥
1/2

+

∥∥∥∥∥
µ∑

k=ν

(
A

(N)
k

)[2]∥∥∥∥∥
1/2
2

≤

∥|AN −A|∥+

∥∥∥∥∥
µ∑

k=ν

(
A

(N)
k

)[2]∥∥∥∥∥
1/2
2

<

(√
ϵ

2
+

√
ϵ

2

)2

= ϵ for all µ > ν > K.

Therefore, A ∈ Oc; it follows that Oc is a closed subspace of Ob. Consequently,
(Oc, ∥|·|∥) is a Banach space. □

In the space Oc, Cauchy-Schwarz’s inequality and Minkowski’s inequality
can be extended by the continuity of the operator norm on B(l2) to infinite
sums as follows.

Theorem 2.10. For any {Ak}∞k=1 and {Bk}∞k=1 in Oc,
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(1)

∥∥∥∥∥
∞∑
k=1

|Ak •Bk|

∥∥∥∥∥ ≤

∥∥∥∥∥
∞∑
k=1

A
[2]
k

∥∥∥∥∥
1/2 ∥∥∥∥∥

∞∑
k=1

B
[2]
k

∥∥∥∥∥
1/2

;

(2)

∥∥∥∥∥
∞∑
k=1

(Ak +Bk)
[2]

∥∥∥∥∥
1/2

≤

∥∥∥∥∥
∞∑
k=1

A
[2]
k

∥∥∥∥∥
1/2

+

∥∥∥∥∥
∞∑
k=1

B
[2]
k

∥∥∥∥∥
1/2

.

On the classical sequence space l2, we have a result closely related to its
duality that a sequence x belongs to l2 if and only if x “Schur multiplies”every y
in l2 into l1. In Proposition 2.11 below, we obtain similar duality-type results for
the sequence spaces Ob and Oc. Notice that by Proposition 2.2, the assertions
stated in this proposition make sense.

Proposition 2.11. Let {Ak}∞k=1 be a sequence in S2.
(1) The sequence {Ak}∞k=1 belongs to Oc if and only if the series

∑∞
k=1 |Ak •

Bk| converges in B(l2) for all {Bk}∞k=1 ∈ Ob. If {Ak}∞k=1 belongs to Oc, then

∥|{Ak}∞k=1|∥ = sup

{∥∥∥∥∥
∞∑
k=1

Ak •Bk

∥∥∥∥∥ : {Bk}∞k=1 ∈ Ob, ∥|{Bk}∞k=1|∥ ≤ 1

}
.

(2) The sequence {Ak}∞k=1 belongs to Ob if and only if the series
∑∞

k=1 |Ak •
Bk| converges in B(l2) for all {Bk}∞k=1 ∈ Oc. If {Ak}∞k=1 belongs to Ob, then

∥|{Ak}∞k=1|∥ = sup

{∥∥∥∥∥
∞∑
k=1

Ak •Bk

∥∥∥∥∥ : {Bk}∞k=1 ∈ Oc, ∥|{Bk}∞k=1|∥ ≤ 1

}
.

Proof. (1) Suppose that the series
∑∞

k=1 |Ak • Bk| converges in B(l2) for all
{Bk}∞k=1 ∈ Ob. Then the linear operator Ψ from Ob into B(l2) defined by
Ψ({Bk}∞k=1) =

∑∞
k=1 Ak • Bk for all {Bk}∞k=1 ∈ Ob is well-defined. To see

that Ψ is bounded, let, for each n, Ψn be the linear operator from Ob into
B(l2) defined by Ψn({Bk}∞k=1) =

∑n
k=1 Ak • Bk for all {Bk}∞k=1 ∈ Ob. Then

by Cauchy-Schwrz’s inequality, Ψn is bounded for all n. For each {Bk}∞k=1 in
Ob, we have ∥Ψn({Bk}∞k=1)∥ ≤ ∥

∑∞
k=1 |Ak •Bk|∥ for all n. So, by the uniform

boundedness principle, supn ∥Ψn∥ < ∞. It follows that Ψ is bounded. For each
n, we have∥∥∥∥∥

n∑
k=1

A
[2]
k

∥∥∥∥∥ =

∥∥∥∥∥
n∑

k=1

Ak •Ak

∥∥∥∥∥ =
∥∥Ψ({A1, A2, . . . , An, 0, 0, . . .})

∥∥
≤ ∥Ψ∥

∥∥∣∣{A1, A2, . . . , An, 0, 0, . . .}
∣∣∥∥ = ∥Ψ∥

∥∥∥∥∥
n∑

k=1

A
[2]
k

∥∥∥∥∥
1/2

.

It follows that
∥∥∥∑n

k=1 A
[2]
k

∥∥∥ ≤ ∥Ψ∥2 for all n, and hence
{
Ak

}∞
k=1

∈ Ob. Thus,

by the assumption, {
∑n

k=1 A
[2]
k }∞n=1 = {

∑n
k=1 Ak •Ak}∞n=1 converges in B(l2).
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Therefore {Ak}∞k=1 ∈ Oc. The converse follows immediately from Cauchy-
Schwrz’s inequality.

If {Ak}∞k=1 ∈ Oc, then the operator Ψ defined above is bounded, and we
also have that ∥|{Ak}∞k=1|∥ ≤ ∥Ψ∥. By Cauchy-Schwarz’s inequality, we have
for every {Bk}∞k=1 ∈ Ob with ∥|{Bk}∞k=1|∥ ≤ 1 that

∥Ψ({Bk}∞k=1)∥ =

∥∥∥∥∥
∞∑
k=1

Ak •Bk

∥∥∥∥∥ = lim
n→∞

∥∥∥∥∥
n∑

k=1

Ak •Bk

∥∥∥∥∥
≤ lim

n→∞

∥∥∥∥∥
n∑

k=1

A
[2]
k

∥∥∥∥∥
1/2 ∥∥∥∥∥

n∑
k=1

B
[2]
k

∥∥∥∥∥
1/2

≤ ∥|{Bk}∞k=1|∥

 lim
n→∞

∥∥∥∥∥
n∑

k=1

A
[2]
k

∥∥∥∥∥
1/2


= ∥|{Bk}∞k=1|∥

∥∥∥∥∥
∞∑
k=1

A
[2]
k

∥∥∥∥∥
1/2

≤ ∥|{Ak}∞k=1|∥ .

It follows that ∥Ψ∥ ≤ ∥|{Ak}∞k=1|∥ .
(2) The proof is similar to that of (1), so omitted. □

Another space of sequences in S2 which can reasonably be defined is the
following:

Ok :=

{{
Ak =

[
a
(k)
ji

]}∞

k=1
⊂ S2 : the matrix

[ ∞∑
k=1

∣∣∣a(k)ji

∣∣∣2] is compact

}
.

For any matrix A and positive integer n, let A⌟n := A − An⌟ . It is apparent
that a sequence {Ak}∞k belongs to Ok if and only if ∥|{(Ak)⌟n}

∞
k=1|∥ → 0. Thus,

by the continuity of the map A 7→ A[2] from S2 into B(l2), we obtain that if

{Ak}∞k=1 ∈ Ok, then A
[2]
k is necessarily compact for all k.

From Proposition 2.6(2), we have that Ok ⊆ Oc. The containment is ob-
viously proper, indeed, any sequence having the first term a matrix A whose
A[2] is noncompact (such as the identity matrix) and other terms 0, belongs
to Oc but doesn’t belong to Ok. Notice that there is an unbounded matrix A
such that A[2] is compact, for example, the matrix A whose first column is the
sequence { 1√

k
}∞k=1 and all other columns are 0. From this result, Ok contains

some sequences of unbounded matrices, for instance, the sequence {Ak}∞k=1

such that Ak =
√

1
2k
A, where A is the matrix defined above, which clearly

belongs to Ok.

Theorem 2.12. A sequence A = {Ak}∞k=1 belongs to Ok if and only if A
[2]
k is

compact for all k and A belongs to Oc.
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Proof. Suppose that A
[2]
k is compact for all k and that A belongs to Oc. Then∑n

k=1 A
[2]
k is compact for all n. Since {

∑n
k=1 A

[2]
k }∞n=1 converges in B(l2), we

have by the closedness of the space of compact operators in B(l2) that the

matrix
∑∞

k=1 A
[2]
k is compact. The converse was already obtained from the

discussion above. □

Theorem 2.13. The set Ok is a Banach space under the norm ∥|·|∥.

Proof. For any {Ak}∞k=1, {Bk}∞k=1 ∈ Ok, we have

∥|{(Ak +Bk)⌟n}
∞
k=1|∥ = ∥|{(Ak)⌟n}

∞
k=1 + {(Bk)⌟n}

∞
k=1|∥

≤ ∥|{(Ak)⌟n}
∞
k=1|∥+ ∥|{(Bk)⌟n}

∞
k=1|∥ → 0.

Thus Ok is closed under addition. It follows that Ok is a normed space under

the norm ∥|·|∥. Suppose that {An = {A(n)
k }∞k=1}∞n=1 is a sequence in Ok con-

verging to an element A = {Ak}∞k=1 in Oc. Let ϵ > 0. Then there is a positive
integer N such that ∥|AN −A|∥ < ϵ

2 . Since AN ∈ Ok, there exists a positive
integer J0 such that∥∥∥∥∣∣∣∣{(A(N)

k

)
⌟J

}∞

k=1

∣∣∣∣∥∥∥∥ <
ϵ

2
for all J ≥ J0.

It follows that

∥|{(Ak)⌟J}
∞
k=1|∥ ≤

∥∥∥∥∣∣∣∣{(A(N)
k

)
⌟J

}∞

k=1

− {(Ak)⌟J}
∞
k=1

∣∣∣∣∥∥∥∥+ ∥∥∥∥∣∣∣∣{(A(N)
k

)
⌟J

}∞

k=1

∣∣∣∣∥∥∥∥
=

∥∥∥∥∣∣∣∣{(A(N)
k −Ak

)
⌟J

}∞

k=1

∣∣∣∣∥∥∥∥+ ∥∥∥∥∣∣∣∣{(A(N)
k

)
⌟J

}∞

k=1

∣∣∣∣∥∥∥∥
≤ ∥|AN −A|∥+

∥∥∥∥∣∣∣∣{(A(N)
k

)
⌟J

}∞

k=1

∣∣∣∣∥∥∥∥
<

ϵ

2
+

ϵ

2
= ϵ for all J ≥ J0.

Consequently,
∑∞

k=1 A
[2]
k is compact. □

Remark 2.14. We note here the following observations.

(1) By Schur-Bennett’s theorem, B(l2) equipped with the Schur product
operation and the operator norm is a Banach algebra. From this result,
the three sequence spaces Ob, Oc, and Ok can be defined on the Banach
algebra B(l2) as well, but they are not complete. In fact, we can choose
by the non-closedness of B(l2) in S2 a sequence of finite-rank matrices
in B(l2) that converges to an unbounded matrix in S2. Such a sequence
induces a Cauchy sequence in each of the three sequence spaces which
is not convergent.

(2) Another sequence space of operators on l2 which might raise some
interesting questions is the space A of sequences {Ak}∞k=1 of absolutely
bounded operators whose

∑∞
k=1 |Ak| converges. It is not hard to show
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that A is a Banach space under the norm defined to be the operator
norm of the corresponding matrix sum.

3. Sequential convergence

In this section, we study sequential convergence in our sequence spaces of
matrices. We expect to have a characterization of convergent sequences in the
sequence spaces of matrices in terms of some sequential convergence modes of
corresponding matrix entries. In [3], I. E. Leonard gave a characterization of
norm convergence of sequences in the classical Banach sequence spaces lp(X)
in terms of norm convergence of sequences in the Banach space X. A similar
result is also obtained in the sequence space Oc.

For any sequence A = {Ak}∞k=1 of matrices and any positive integer K, we
let here A[K := {0, 0, . . . , 0, AK , AK+1, . . .}.

Theorem 3.1. Let {An = {A(n)
k }∞k=1}∞n=1 be a sequence in Oc and A =

{Ak}∞k=1 ∈ Ob. Then An → A if and only if

(1) A ∈ Oc;

(2) A
(n)
k → Ak in S2 for all k;

(3)
∥∥∣∣(An)[K

∣∣∥∥→
∥∥∣∣A[K

∣∣∥∥ for all K.

Proof. Suppose that {An = {A(n)
k }∞k=1}∞n=1 converges to A = {Ak}∞k=1. Then

by the closedness of Oc in Ob, we have A ∈ Oc. It is evident that A
(n)
k → Ak

for all k. Since An → A, it is easy to see that (An)[K → A[K for all K. Thus,

by the continuity of the norm ∥|·|∥, we have
∥∥∣∣(An)[K

∣∣∥∥ →
∥∥∣∣A[K

∣∣∥∥ for all K.
Conversely, suppose that the conditions (1)-(3) hold. For each integer K ≥ 1,
we have by Minkowski’s inequality that∥∥∥∥∥

∞∑
k=1

(
A

(n)
k −Ak

)[2]∥∥∥∥∥
≤

∥∥∥∥∥
K∑

k=1

(
A

(n)
k −Ak

)[2]∥∥∥∥∥+
∥∥∥∥∥

∞∑
k=K+1

(
A

(n)
k −Ak

)[2]∥∥∥∥∥
≤

K∑
k=1

∥∥∥∥(A(n)
k −Ak

)[2]∥∥∥∥+

∥∥∥∥∥

∞∑
k=K+1

(
A

(n)
k

)[2]∥∥∥∥∥
1/2

+

∥∥∥∥∥
∞∑

k=K+1

A
[2]
k

∥∥∥∥∥
1/2


2

for all n.

By taking the limit as n → ∞, we have

lim sup
n→∞

∥|An −A|∥ = lim sup
n→∞

∥∥∥∥∥
∞∑
k=1

(
A

(n)
k −Ak

)[2]∥∥∥∥∥
1/2

≤ 2

∥∥∥∥∥
∞∑

k=K+1

A
[2]
k

∥∥∥∥∥
1/2

.

Hence, by taking the limit as K → ∞, we obtain lim supn→∞ ∥|An −A|∥ = 0.
This yields limn→∞ ∥|An −A|∥ = 0. The proof is complete. □
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We obtain as expected a further characterization of norm convergence of
sequences in the sequence space Ok in terms of norm convergence, in the space
l2, of sequences of the matrix rows from the corresponding sequence of matrix
sums.

We denote here, for any sequence A = {Ak}∞k=1 of matrices and any positive
integer J , the sequence {Ak − (Ak)J}∞k=1 by AJ .

Theorem 3.2. Let {An = {[a(k,n)ji ]}∞k=1}∞n=1 be a sequence in the space Ok,

and let A = {[a(k)ji ]}∞k=1 be an element in Ob. Then An → A if and only if

(1) A ∈ Ok;

(2) {
∑∞

k=1 |a
(k,n)
ji − a

(k)
ji |2}∞i=1 → 0 in l2 for all j;

(3) ∥|(An)J |∥ → ∥|AJ |∥ for all J .

Proof. Suppose that An → A. Then by the closedness of Ok in Ob, the condi-
tion (1) holds. From the well-known fact that if A belongs to B(l2), then each
row of A belongs to l2 and has the l2-norm less than or equal to the operator
norm of A, we have the condition (2) is satisfied. Since An → A, it is evi-
dent that (An)J → AJ for all J . Thus, by continuity of the norm ∥|·|∥, (3) is
obtained. Conversely, suppose that the conditions (1)-(3) are satisfied. Notice
that for any a, b, r > 0, (a+ b)r ≤ 2r(ar + br). Then for each fixed J , we have
for any x = {xi}∞i=1 ∈ l2 with ∥x∥2 ≤ 1 that

∥∥∥∥∥
[ ∞∑
k=1

∣∣∣a(k,n)ji − a
(k)
ji

∣∣∣2]x∥∥∥∥∥
2

2

≤
∞∑
j=1

( ∞∑
i=1

∞∑
k=1

∣∣∣a(k,n)ji − a
(k)
ji

∣∣∣2 |xi|

)2

=

∞∑
j=J+1

( ∞∑
i=1

∞∑
k=1

∣∣∣a(k,n)ji − a
(k)
ji

∣∣∣2 |xi|

)2

+

j=J∑
j=1

( ∞∑
i=1

∞∑
k=1

∣∣∣a(k,n)ji − a
(k)
ji

∣∣∣2 |xi|

)2

≤ 64
(
∥|(An)J |∥

4
+ ∥|AJ |∥

4
)

+

j=J∑
j=1

∞∑
i=1

( ∞∑
k=1

∣∣∣a(k,n)ji − a
(k)
ji

∣∣∣2)2

for all n.

Thus, for each J , we obtain for every n that

∥|An −A|∥ ≤

{
64
(
∥|(An)J |∥

4
+ ∥|AJ |∥

4
)
+

j=J∑
j=1

∞∑
i=1

( ∞∑
k=1

∣∣∣a(k,n)ji − a
(k)
ji

∣∣∣2)2}1/4

.
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Hence, for each J ,

lim sup
n→∞

∥|An −A|∥ ≤ 4
√
128 ∥|AJ |∥ =

4
√
128

∥∥∥∥∥∥
( ∞∑

k=1

A
[2]
k

)
J

−
∞∑
k=1

A
[2]
k

∥∥∥∥∥∥
1/2

.

Therefore, by the compactness of the matrix
∑∞

k=1 A
[2]
k , we have by tak-

ing the limit as J → ∞ that lim supn→∞ ∥|An −A|∥ = 0. It follows that
limn→∞ ∥|An −A|∥ = 0. Consequently, we obtain An → A as asserted. The
proof is finished. □

4. Duality and preduality of Ok

In this section we study the duality and preduality of the sequence space
Ok.

Let K2 be the set of all infinite matrices A whose A[2] is compact as an
operator on l2. It was proved in [4] that K2 is the closure in S2 of the set
of all matrices with finitely many non-zero entries, and moreover A ∈ K2 if
and only if ∥|An⌟ −A|∥2 → 0. By Theorem 2.12, we see that for a sequence

{Ak = [a
(k)
ji ]}∞k=1 in K2, the matrix [

∑∞
k=1 |a

(k)
ji |2] is compact if and only if the

series
∑∞

k=1 A
[2]
k converges.

For any z ∈ C, let sgn(z) = z
|z| if z ̸= 0 and sgn(z) = 1 otherwise.

Theorem 4.1. The space Ok cannot be the dual space of any normed space.

Proof. We will show first that the closed unit ball of Ok has no extreme points.
Let A = {Ak}∞k=1 ∈ Ok with ∥|A|∥ = 1. Then there is n0 such that

(∗∗)

∥∥∥∥∥∥
∞∑
k=1

A
[2]
k −

( ∞∑
k=1

A
[2]
k

)
n0

∥∥∥∥∥∥ <
1

2
.

Let, for each k, Ek be the matrix whose (n0 +1, k)-th entry is 1√
2

(
1
2

) k
4 and all

other entries are 0, and let B = {Ak + Ek}∞k=1 and C = {Ak − Ek}∞k=1. It is

clear that {Ek}∞k=1 belongs to Ok (in fact,
∑∞

k=1 E
[2]
k is a rank-1 operator with

the norm 1
2 ). Thus B and C belong to Ok and A = 1

2B+ 1
2C. From (∗∗) and

our Minkowski’s inequality for sequences of matrices, we obtain

∥|B|∥ = max


∥∥∥∥∥∥
( ∞∑

k=1

A
[2]
k

)
n0

∥∥∥∥∥∥ ,
∥∥∥∥∥∥

∞∑
k=1

(Ak + Ek)
[2] −

( ∞∑
k=1

(Ak + Ek)
[2]

)
n0

∥∥∥∥∥∥


1/2

≤ 1,

and

∥|C|∥ = max


∥∥∥∥∥∥
( ∞∑

k=1

A
[2]
k

)
n0

∥∥∥∥∥∥ ,
∥∥∥∥∥∥

∞∑
k=1

(Ak − Ek)
[2] −

( ∞∑
k=1

(Ak − Ek)
[2]

)
n0

∥∥∥∥∥∥


1/2

≤ 1.
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Consequently, A is not an extreme point of the closed unit ball of Ok. It follows
that the closed unit ball of Ok has no extreme points. If Ok were the dual of
a normed space, then by the Banach-Alaoglu theorem and the Krein-Milman
theorem, the closed unit ball of Ok would have to contain at least one extreme
point. This contradicts to the fact above. The proof is complete. □

We next investigate the duality of Ok. For any matrix A = [aji], let
∑

A =∑∞
j=1

∑∞
i=1 aji if the sum

∑∞
j=1

∑∞
i=1 aji converges. Let

M =
{
B :

∑
|A •B| < ∞ for all A ∈ K2

}
.

By the closed graph theorem, the norm

∥B∥M = sup
{∑

|A •B| : A ∈ K2, ∥|A|∥2 ≤ 1
}

is a well-defined norm on M.

Lemma 4.2. The set M equipped with the norm ∥·∥M is a Banach space.

Proof. Let {Bn = [b
(n)
ji ]}∞n=1 be a Cauchy sequence in M. Notice that for any

[cji] in M, |cji| ≤ ∥[cji]∥M. Then for each (j, i), the sequence {b(n)ji }∞n=1 is a

Cauchy sequence in C. Let bji = limn→∞ b
(n)
ji , and put B = [bjk]. We will

prove that B ∈ M and Bn → B. Let ϵ > 0. Then there is a positive integer N
such that for any A ∈ K2 with ∥|A|∥2 ≤ 1 and any J ≥ 1,∑

|AJ⌟ • (Bn −Bm)| ≤ ∥Bn −Bm∥M <
ϵ

2
for all n,m ≥ N.

Thus, by taking the limit as m → ∞,∑
|AJ⌟ • (Bn −B)| ≤ ϵ

2
for all n ≥ N.

It follows for any A ∈ K2 with ∥|A|∥2 ≤ 1 that∑
|A • (Bn −B)| ≤ ϵ

2
for all n ≥ N.

This implies that BN −B ∈ M. Thus B ∈ M, and hence Bn → B. □

Let

△ =

{
{Bk}∞k=1 ⊂ M :

∞∑
k=1

∣∣∣∑Ak •Bk

∣∣∣ < ∞ for all {Ak}∞k=1 ∈ Ok

}
.

It can also be shown by the closed graph theorem that

∥{Bk}∞k=1∥∗ := sup

{ ∞∑
k=1

∣∣∣∑Ak •Bk

∣∣∣ : {Ak}∞k=1 ∈ Ok, ∥|{Ak}∞k=1|∥ ≤ 1

}
< ∞

for all {Bk}∞k=1 ∈ △.

Lemma 4.3. For any B = {Bk}∞k=1 in △, ∥Bk∥M ≤ ∥B∥∗.
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Proof. For any A in K2 with ∥|A|∥2 ≤ 1, let Ãk = (sgn
∑

A •Bk)A for all k,

and let Ck = Ãk and Ci = 0 otherwise. Then {Ci}∞i=1 ∈ Ok and ∥|{Ci}∞i=1|∥ =
∥|A|∥2 ≤ 1. Thus

∑
|A•Bk| =

∑∞
i=1

∑
Ci•Bi ≤ ∥B∥∗. Accordingly, ∥Bk∥M ≤

∥B∥∗. □

Theorem 4.4. The set △ equipped with the norm ∥·∥∗ is a Banach space.

Proof. Let {Bn = {B(n)
k }∞k=1}∞n=1 be a Cauchy sequence in △. By Lemma 4.3,

we have for any k that∥∥∥B(n)
k −B

(m)
k

∥∥∥
M

≤ ∥Bn −Bm∥∗ for all m,n.

It follows that {B(n)
k }∞n=1 is a Cauchy sequence in M for all k. Thus, by the

completeness of M, there is for each k a matrix Bk in M such that B
(n)
k → Bk.

Let B = {Bk}∞k=1. We claim that B ∈ △ and Bn → B. To prove this, let
ϵ > 0. Then there is a positive integer N such that for any A = {Ak}∞k=1 ∈ Ok

with ∥|A|∥ ≤ 1,
∞∑
k=1

∣∣∣∑Ak •
(
B

(n)
k −B

(m)
k

)∣∣∣ ≤ ∥Bn −Bm∥∗ <
ϵ

2
for all n,m ≥ N.

Since for each k, B
(m)
k → Bk, we have

∑
A •

(
B

(m)
k −Bk

)
→ 0 for all A ∈ K2

and all k. Thus, by taking the limit as m → ∞, we have for each A =
{Ak}∞k=1 ∈ Ok with ∥|A|∥ ≤ 1 that

∞∑
k=1

∣∣∣∑Ak •
(
B

(n)
k −Bk

)∣∣∣ ≤ ϵ

2
for all n ≥ N.

This implies that BN −B ∈ △. Thus B ∈ △, and therefore, Bn → B. □

The following duality theorem for Ok is obtained.

Theorem 4.5. O∗
k is isometrically isomorphic to △.

Proof. Let B = {Bk}∞k=1 ∈ △. We then define a linear functional ΨB on Ok

by ΨB(A) =
∑∞

k=1

∑
Ak •Bk for all A = {Ak}∞k=1 in Ok. It is clear that ΨB

is bounded and ∥ΨB∥ ≤ ∥B∥∗. To see that ∥ΨB∥ ≥ ∥B∥∗, let A = {Ak}∞k=1 ∈
Ok with ∥|A|∥ ≤ 1. Put Ã = {(sgn

∑
Ak •Bk)Ak}∞k=1. Then Ã ∈ Ok and∥∥∥∣∣∣Ã∣∣∣∥∥∥ = ∥|A|∥, and we have

∞∑
k=1

∣∣∣∑Ak •Bk

∣∣∣ = ∞∑
k=1

∑(
sgn

∑
Ak •Bk

)
Ak •Bk

= ΨB

(
Ã
)
≤ ∥ΨB∥ .

Thus ∥B∥∗ ≤ ∥ΨB∥ as required. Next, let Φ ∈ O∗
k. For each k, let Φ(k) be a

linear functional on K2 defined by Φ(k)(A) = Φ(S(k;A)), where S(k;A) is the
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sequence whose k-th term is A and all other terms 0. Then Φ(k) ∈ (K2)∗ for
all k. For each k, let Bk =

[
Φ(k)(E(j, i))

]
, where E(j, i) is the matrix with the

(j, i)-th entry 1 and all other entries 0. Let B = {Bk}∞k=1. We are now going
to show that B ∈ △. To see this, we need to show first that Bk ∈ M for all

k. Let A = [aji] ∈ K2, and put Ã =
[
sgn

(
ajiΦ

(k)(E(j, i))
)
aji
]
. Then Ã ∈ K2,

and we have for each k that∑
|An⌟ •Bk| =

∑
Ãn⌟ •Bk = Φ(k)

(
Ãn⌟

)
≤
∥∥∥Φ(k)

∥∥∥ ∥|A|∥2 for all n.

It follows that Bk ∈ M for all k. Notice that for any A ∈ K2, we have for each
k that

Φ(k)(A) = lim
n→∞

Φ(k)(An⌟) = lim
n→∞

n∑
j=1

n∑
i=1

ajiΦ
(k)(E(j, i)) =

∑
A •Bk.

This give us for any A = {Ak}∞k=1 in Ok that

∞∑
k=1

∑
Ak •Bk =

∞∑
k=1

Φ(k)(Ak) = Φ(A).

To show that B ∈ △, let A = {Ak}∞k=1 ∈ Ok, and define Ã = {Ãk}∞k=1, where

Ãk is defined similarly as above. Then Ã belongs to Ok and by the note above
and its consequence, we obtain

∞∑
k=1

∣∣∣∑Ak •Bk

∣∣∣ ≤ ∞∑
k=1

∑
|Ak •Bk| =

∞∑
k=1

∑
Ãk •Bk

=
∞∑
k=1

Φ(k)
(
Ãk

)
= Φ

(
Ã
)
.

Hence B ∈ △, and thus ΨB = Φ. The proof is finished. □

We end this paper with the reflexivity of the three sequence spaces.

Theorem 4.6. All the three sequence spaces Ok, Oc, and Ob are not reflexive.

Proof. Since Ok cannot be the dual space of any normed space, it follows
that Ok is not reflexive. Thus the other two sequence spaces are also not
reflexive. □
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