ON THE RELATION BETWEEN COMPACTNESS AND STRUCTURE OF CERTAIN OPERATORS ON SPACES OF ANALYTIC FUNCTIONS

B. KHANI ROBATI

Dept. of Mathematics,

Shiraz University, Shiraz 71454, IRAN.

E-mail: khani@math.susc.ac.ir.

Abstract. Let \mathcal{B} be a Banach space of analytic functions defined on the open unit disk. Assume S is a bounded operator defined on \mathcal{B} such that S is in the commutant of M_{z^n} or $SM_{z^n} = -M_{z^n}S$ for some positive integer n. We give necessary and sufficient condition between compactness of $SM_z + cM_zS$ where c = 1, -1, i, -i, and the structure of S. Also we characterize the commutant of M_{z^n} for some positive integer n.

1. Introduction

In this section we give some notation and definitions which we use later. Let \mathcal{B} be a Banach space consisting of complex valued analytic functions defined on the open unit disk \mathbf{D} in the plane such that $1 \in \mathcal{B}, z\mathcal{B} \subset \mathcal{B}$ and for every $\lambda \in \mathbf{D}$ the evaluation functional at $\lambda, e_{\lambda} : \mathcal{B} \to \mathbf{C}$, given by $f \mapsto f(\lambda)$, is bounded. Let $\varphi : \mathbf{D} \to \mathbf{D}$ be a rotation we assume that for every $f \in \mathcal{B}$, $f \circ \varphi$ is in \mathcal{B} and the composition operator C_{φ} defined by $C_{\varphi}(f) = f \circ \varphi$ is bounded. We define $\tilde{f}(\lambda) = f(-\lambda)$ and $\hat{f}(\lambda) = f(i\lambda)$ for every $\lambda \in \mathbf{D}$. Also we assume that the set of all analytic polynomials \mathcal{P} is dense in \mathcal{B} . We set $\mathcal{B}_i = \text{closed linear span } \{z^{nk+i} : k \geq 0\}$ for i = 0, 1, 2, ..., n-1. Let p be a polynomial having decomposition

Received November 22, 1999.

¹⁹⁹¹ AMS Subject Classification: Primary 47B35; Secondary 47B38.

Key words and phrases: Commutant, multiplication operators, Banach space of analytic functions, bounded point evaluation, compact operator.

Research supported by the Shiraz University Grant 78-SC-1188-657.

 $p = p_0 + p_1 + ... + p_{n-1}$ where $p_i \in \mathcal{B}_i$ for i = 0, 1, 2, ..., n-1. Furthermore we assume that there are positive constants c_n and d_n such that $||p_i|| \le c_n ||p|| \le d_n \max \{||p_i|| : i = 0, 1, 2, \cdots, n-1\}$. Therefore the projection operator $P_{n,i} : \mathcal{P} \to \mathcal{B}$ defined by $P_{n,i}(p) = p_i$ has a unique extension to \mathcal{B} , and every $f \in \mathcal{B}$ has a unique decomposition $f = f_0 + f_1 + f_2 + \cdots + f_{n-1}$ where $f_i \in \mathcal{B}_i$ for $i = 0, 1, 2, \cdots, n-1$.

Throughout this article by a Banach space of analytic functions we mean one satisfying the above conditions. A complex valued function φ defined on \mathbf{D} for which $\varphi f \in \mathcal{B}$ for all f in \mathcal{B} is called a multiplier of \mathcal{B} and the collection of all such multipliers is denoted by $\mathcal{M}(\mathcal{B})$. Each multiplier determines a multiplication operator M_{φ} on \mathcal{B} defined by $M_{\varphi}(f) = \varphi f$. By the closed graph theorem it is easy to see that M_{φ} is bounded. Let $L(\mathcal{B})$ denote the algebra of all bounded operators on \mathcal{B} . It is well known that if $X \in L(\mathcal{B})$ and $XM_z = M_z X$, then $S = M_{\varphi}$ for some function $\varphi \in \mathcal{M}(\mathcal{B})$.

Throughout this article $\{M_{\varphi}\}'$ denotes the set of all bounded linear operators X on \mathcal{B} such that $M_{\varphi}X = XM_{\varphi}$, i.e., the commutant of M_{φ} . Given $A \subset \mathcal{B}$ by the $\vee A$ we mean the closed linear span of A in \mathcal{B} and for a fixed positive integer n we set $\mathcal{B}_i = \bigvee \{z^{nk+i} : k \geq 0\}$ for i = 0, 1, 2, ..., n-1. We define $\tilde{M}_{\varphi} : \mathcal{B} \to \mathcal{B}$ by $\tilde{M}_{\varphi}(f) = \varphi \hat{f}$; and define $\hat{M}_{\varphi} : \mathcal{B} \to \mathcal{B}$ by $\hat{M}_{\varphi}(f) = \varphi \hat{f}$; by the closed graph theorem \tilde{M}_{φ} and \hat{M}_{φ} are bounded.

In what follows we present some examples of such spaces.

EXAMPLES.

a) The spaces D_{α} of all functions $f(z) = \sum \hat{f}(n)z^n$, holomorphic in **D**, for which

$$||f||_{\alpha}^{2} = \sum (n+1)^{\alpha} |\hat{f}(n)|^{2} < \infty$$

for every $\alpha \in R$.

b)Let $1 and let <math>\{\alpha(n)\}$ be a sequence of positive numbers with $\alpha(0) = 1$. We consider the space of sequences $f = \{\hat{f}(n)\}$ such that

$$||f||_p^p = \sum_{n=0}^{\infty} |\hat{f}(n)|^p [\alpha(n)]^p < \infty.$$

We shall use the formal notation $f(z) = \sum_{n=0}^{\infty} \hat{f}(n)z^n$ for $z \in \mathbf{D}$ (See Shields [5] for p = 2). Let $\mathcal{B}^p(\alpha) = \{f | f(z) =$ $\sum_{n=0}^{\infty} \hat{f}(n)z^n$; $||f||_p < \infty$ and

$$\mathcal{B}_a^p(\alpha) = \{ f \in \mathcal{B}^p(\alpha) | \ f(z) = \sum_{n=0}^{\infty} \hat{f}(n) z^n \text{ is convergent in } \mathbf{D} \}.$$

Let $\{1/\alpha(n)\}\in \ell^q$. If $f\in \mathcal{B}^p(\alpha)$ and $\lambda\in \mathbf{D}$, we have

$$|f(\lambda)| = |\sum_{n=0}^{\infty} \hat{f}(n)\lambda^{n}| \le (\sum_{n=0}^{\infty} |\hat{f}(n)|^{p} [\alpha(n)]^{p})^{1/p} (\sum_{n=0}^{\infty} \frac{|\lambda|^{nq}}{\alpha(n)^{q}})^{1/q}.$$

Therefore, f is analytic and $||f||_{\mathbf{D}} \leq ||\{\frac{1}{\alpha(n)}\}||_q||f||_p$. Also $\mathcal{B}_a^p(\alpha)$ $=\mathcal{B}^p(\alpha)\subset\mathcal{H}^\infty$. Furthermore, each point of **D** is a bounded point evaluation for $\mathcal{B}^p(\alpha)$ and also convergence in $\mathcal{B}^p(\alpha)$ implies uniform convergence on D. For more information on these spaces see [3], [6], [7]

Cuckovic in [1] investigates the commutant of M_{z^n} on the Bergman space $L^2_a(\mathbf{D})$, Seddighi and Vaezpour [4] have shown that under certain conditions on the reproducing kernels of a functional Hilbert spaces every operator S essentially commuting with M_z and commuting with M_{z^n} for some n > 1 is a multiplication operator. In [2] the author characterized the commutant of M_{z^2} on various spaces of analytic functions. In section two we investigate the relation between compactness and the structure of operator S such that $S \in \{M_{z^n}\}'$ or $SM_{z^n} = -M_{z^n}S$ for some positive integer n. We give necessary and sufficient condition under which S gets the form M_{φ} or \tilde{M}_{φ} or \hat{M}_{φ} for some $\varphi \in \mathcal{M}(\mathcal{B})$.

2. The Main Results

In the next lemma we show that if $SM_z = -M_z S$, then $S = \tilde{M}_{\omega}$ for some multiplication function φ .

LEMMA 2.1. Let \mathcal{B} be a Banach space of analytic functions and let $S: \mathcal{B} \to \mathcal{B}$ be an operator such that $SM_z = -M_zS$. Then there exists a $\varphi \in \mathcal{M}(\mathcal{B})$ such that $S(f) = \varphi \tilde{f}$ for every $f \in \mathcal{B}$.

Proof. Let $S(1) = \varphi$. We have $S(z) = -z\varphi$ and by induction $S(z^n) = (-1)^n z^n \varphi$ for every positive integer n. Hence for a polynomial $p, S(p) = \varphi \tilde{p}$. Now assume that $f \in \mathcal{B}$ and let $\{p_n\}$ be a sequence of polynomials such that $p_n \to f$ in \mathcal{B} . According to the properties of \mathcal{B} , $\tilde{p}_n \to \tilde{f}$ in \mathcal{B} and so pointwise. Therefore $\varphi \tilde{p}_n \to \varphi \tilde{f}$ pointwise, since $S(p_n) = \varphi \tilde{p}_n$ converges to S(f) pointwise we have $S(f) = \varphi \tilde{f}$.

LEMMA 2.2. Suppose \mathcal{B} is a Banach space of analytic functions, $S \in L(\mathcal{B})$, $SM_{z^n} = -M_{z^n}S$ for some positive odd integer n > 1, and $\mathcal{B}_i = \bigvee \{z^{2nk+i} : k \geq 0\}$ for $i = 0, 1, 2, \dots, 2n-1$. Suppose $f \in \mathcal{B}$ has decomposition $f = f_0 + f_1 + \dots + f_{2n-1}$ where $f_i \in \mathcal{B}_i$ for $i = 0, 1, 2, \dots, 2n-1$. Then

$$S(f) = \varphi_0 \tilde{f} + \varphi_1 \left(\frac{f_1 - f_{n+1}}{z} \right) + \varphi_2 \left(\frac{f_2 - f_{n+2}}{z^2} \right) + \cdots + \varphi_{n-1} \left(\frac{f_{n-1} - f_{2n-1}}{z^{n-1}} \right),$$

where $\varphi_0 = S(1)$, $\varphi_i = (SM_{z^i} - M_{z^i}S)(1)$ for positive even integers i < n and $\varphi_i = (SM_{z^i} + M_{z^i}S)(1)$ for positive odd integers i < n. Also:

$$(SM_z + M_z S)(f) = f_0 \varphi_1 + f_1 \left(\frac{\varphi_2}{z} + \varphi_1\right) + f_2 \left(\frac{\varphi_3}{z^2} + \frac{\varphi_2}{z}\right) + \cdots + f_{n-1} \frac{\varphi_{n-1}}{z^{n-2}} - f_n \varphi_1 - f_{n+1} \left(\frac{\varphi_2}{z} + \varphi_1\right) - f_{n+2} \left(\frac{\varphi_3}{z^2} + \frac{\varphi_2}{z}\right) - \cdots - f_{2n-1} \left(\frac{\varphi_{n-1}}{z^{n-2}}\right).$$

Proof. Let p be a polynomial having decomposition $p = p_0 + p_1 + p_2 + \cdots + p_{2n-1}$ with respect to \mathcal{B}_i for $i = 0, 1, 2, \cdots, 2n-1$. Since $\varphi_0 = S(1), \varphi_i = (SM_{z^i} + M_{z^i}S)(1)$ for i odd and $\varphi_i = (SM_{z^i} - M_{z^i}S)(1)$ for i even and $1 \leq i \leq n-1$, we have $S(z^i) = \varphi_i - z^i\varphi_0$ for i odd and $S(z^i) = \varphi_i + z^i\varphi_0$ for i even and $1 \leq i \leq n-1$. Also $S(z^{2nk}) = \varphi_0 z^{2nk}$ and $S(z^{2nk+n}) = -\varphi_0 z^{2nk+n}$. Therefore an easy calculation shows that

$$S(p_0) = \varphi_0 p_0, S(p_1) = \frac{p_1}{z} \varphi_1 - p_1 \varphi_0, S(p_2)$$

= $\frac{p_2}{z^2} \varphi_2 + p_2 \varphi_0, \cdots, S(p_n) = -p_n \varphi_0.$

 $S(p_{n+1}) = -\frac{p_{n+1}}{r}\varphi_1 + p_{n+1}\varphi_0, \cdots, S(p_{2n-1}) = -\frac{p_{2n-1}}{r^{n-1}}\varphi_{n-1}$ $p_{2n-1}\varphi_0$. Since $\tilde{S}(p) = S(p_0) + S(p_1) + S(p_2) + \cdots + \tilde{S}(p_{2n-1})$ we can see that S(p) has the same form stated in the theorem. Now since polynomials are dense in \mathcal{B} and convergence in norm implies pointwise convergence, the proof is completed.

The second part follows easily by considering

$$(SM_z + M_z S)(f) = S(zf) + zS(f)$$

$$= -z\hat{f}\varphi_0 + (f_0 - f_n)\varphi_1 + \frac{(f_1 - f_{n+1})}{z}\varphi_2$$

$$+ \dots + (\frac{f_{n-2} - f_{2n-2}}{z^{n-2}})\varphi_{n-1} + z\hat{f}\varphi_0 + (f_1 - f_{n+1})\varphi_1$$

$$+ (\frac{f_2 - f_{n+2}}{z})\varphi_2 + \dots + (\frac{f_{n-1} - f_{2n-1}}{z^{n-2}})\varphi_{n-1}.$$

Note that if $S \in \{M_z\}'$ or $SM_z = -M_zS$, then $S \in \{M_{z^n}\}'$ for all positive even integers n. Hence if $SM_{z^n} = -SM_{z^n}$ for n even, then S does not have the form of M_{ϕ} or \tilde{M}_{ϕ} . However we show that if n is an odd integer and $SM_z + M_zS$ is compact, then $S = \tilde{M}_{\omega}$ for some function $\varphi \in \mathcal{M}(\mathcal{B})$.

In the next theorem, with a slight refinement we will use the idea of the proof of the Theorem 1.4 in [1].

Theorem 2.3. Suppose \mathcal{B} is a Banach space of analytic functions, $S \in L(\mathcal{B})$ and $SM_{z^n} = -M_{z^n}S$ for some odd integer n > 1. There is a function $\phi \in \mathcal{M}(\mathcal{B})$ such that $S = \tilde{M}_{\phi}$ if and only if $SM_z + M_zS$ is compact.

Proof. Let $SM_z + M_zS$ be a compact operator and $\mathcal{B}_{i} = \{z^{2nk+i} : k \geq 0\} \text{ for } i = 0, 1, 2, \dots, 2n-1. \text{ suppose } f \in \mathcal{B}$ having decomposition $f = f_0 + f_1 + ... + f_{2n-1}$ where $f_i \in \mathcal{B}_i$, i = 0, 1, ..., 2n - 1. By Lemma 2.2 we have:

$$(SM_z + M_z S)(f) = f_0 \varphi_1 + f_1 \left(\frac{\varphi_2}{z} + \varphi_1\right) + f_2 \left(\frac{\varphi_3}{z^2} + \frac{\varphi_2}{z}\right) + \cdots + f_{n-1} \frac{\varphi_{n-1}}{z^{n-2}} - f_n \varphi_1 - f_{n+1} \left(\frac{\varphi_2}{z} + \varphi_1\right) - f_{n+2} \left(\frac{\varphi_3}{z^2} + \frac{\varphi_2}{z}\right) - \cdots - f_{2n-1} \left(\frac{\varphi_{n-1}}{z^{n-2}}\right).$$

Since $(SM_z + M_zS)|_{\mathcal{B}_0} = M_{\varphi_1}|_{\mathcal{B}_0}$ is compact, it follows that $M_{\varphi_1z^{2n}}|_{\mathcal{B}_0} = M_{z^{2n}}M_{\varphi_1}|_{\mathcal{B}_0}$ is compact. Also we see that $M_{\varphi_1z^{2n}}|_{\mathcal{B}_i} = M_{z^i}M_{\varphi_1}|_{\mathcal{B}_0}M_{z^{2n-i}}|_{\mathcal{B}_i}$ is compact for $i=1,2,\cdots,2n-1$. Since there are positive constants c_{2n} and d_{2n} such that $||f_i|| \leq c_{2n}||f|| \leq d_{2n} \max \{||f_i||: i=0,1,2,\cdots,2n-1\}$ we have $M_{z^{2n}\varphi_1}$ is compact on \mathcal{B} and by the Fredholm alternative theorem, $z^{2n}\varphi_1=0$ so $\varphi_1=0$. Now $(SM_z+M_zS)=M_{\frac{\varphi_2}{z}}$ on \mathcal{B}_1 and it is a compact operator. Hence $M_{\frac{\varphi_2}{z}}(M_z|_{\mathcal{B}_0})=M_{\varphi_2}$ is compact on \mathcal{B}_0 . By a similar argument, we have $\varphi_2=0$, and repeating this method we conclude that $\varphi_1=\varphi_2=\ldots=\varphi_{2n-1}=0$. Hence by Lemma 2.2, $S(f)=\varphi_0\tilde{f}$ for each $f\in\mathcal{B}$.

The converse is obvious.

COROLLARY 2.4. Let \mathcal{B} be a Banach space of analytic functions and let $S \in \{M_{z^2n}\}'$ for some positive odd integer n. Then $S \in \{M_{z^n}\}'$ if and only if $SM_{z^n} - M_{z^n}S$ is compact.

Proof. Assume that $SM_{z^n}-M_{z^n}S$ is compact. We have $(SM_{z^n}-M_{z^n}S)M_{z^n}=SM_{z^2n}-M_{z^n}SM_{z^n}=-M_{z^n}(SM_{z^n}-M_{z^n}S)$. Hence by Theorem 2.3, $SM_{z^n}-M_{z^n}S=\tilde{M}_{\phi}$ for some function $\phi\in\mathcal{M}(\mathcal{B})$. Now we show that M_{ϕ} is compact. Let $\{f_n\}$ be a sequence of functions in \mathcal{B} such that $\|f_n\|<1$ so $\{\tilde{f}_n\}$ is a bounded sequence in \mathcal{B} . Since \tilde{M}_{φ} is compact, there is a subsequence $\{f_{n_k}\}$ such that $\tilde{M}_{\phi}(\tilde{f}_{n_k})$ converges to a function g in \mathcal{B} . But $\tilde{M}_{\phi}(\tilde{f}_{n_k})=\phi\tilde{f}_{n_k}=\phi f_{n_k}$, so M_{ϕ} is compact and by the Fredholm alternative theorem $\phi=0$. This implies that $M_{z^n}S=SM_{z^n}$, and hence $S\in\{M_{z^n}\}$.

THEOREM 2.5. Let \mathcal{B} be a Banach space of analytic functions and let $S \in L(\mathcal{B})$ such that $SM_{z^n} = -M_{z^n}S$ for some odd integer $n \geq 1$. If $SM_z - M_zS$ is compact, then S = 0.

Proof. Suppose n=1. We have $(SM_z-M_zS)M_z=-M_z(SM_z-M_zS)$ and hence by Lemma 2.1, $(SM_z-M_zS)=\tilde{M}_{\phi}$. But \tilde{M}_{ϕ} is compact and so $\phi=0$. Therefore $SM_z=M_zS$ and S=0. Now let $n\geq 1$, and p be a polynomial having decomposition $p=p_0+p_1+\cdots+p_{2n-1}$ such that $p_i\in B_i$ for $0\leq i\leq 2n-1$. By

Lemma 2.2 we have:

$$(SM_{z} - M_{z}S)(p) = S(zp) - zS(p)$$

$$= -z\varphi_{0}\tilde{p} + \varphi_{1}(p_{0} - p_{n}) + \varphi_{2}(\frac{p_{1} - p_{n+1}}{z}) + \cdots$$

$$+ \varphi_{n-1}(\frac{p_{n-2} - p_{2n-2}}{z^{n-2}}) - z(\varphi_{0}\tilde{p} + \varphi_{1}(\frac{p_{1} - p_{n+1}}{z})$$

$$+ \varphi_{2}(\frac{p_{2} - p_{n+2}}{z^{2}}) + \cdots + \varphi_{n-1}(\frac{p_{n-1} - p_{2n-1}}{z^{n-1}})) .$$

$$= p_{0}(-2z\varphi_{0} + \varphi_{1}) + p_{1}(+2z\varphi_{0} + \frac{\varphi_{2}}{z} - \varphi_{1})$$

$$+ p_{2}(-2z\varphi_{0} + \frac{\varphi_{3}}{z^{2}} - \frac{\varphi_{2}}{z}) + \cdots$$

$$+ p_{2n-1}(+2z\varphi_{0} + \frac{\varphi_{n-1}}{z^{n-2}})$$

By a similar argument as in Theorem 2.3, we have $SM_z - M_z S = 0$ which is a contradiction or directly we obtain

$$\begin{split} &-2z\varphi_0+\frac{\varphi_i}{z^{i-1}}=0 \qquad \text{for} \quad 1\leq i\leq n-1 \ \text{and} \ i \ \text{odd} \ , \\ &\frac{\varphi_i}{z^{i-1}}=0 \quad ; \quad \text{for} \quad 1\leq i\leq n-1 \ \text{ and} \ i \ \text{even} \ , \\ &2z\varphi_0+\frac{\varphi_{n-1}}{z^{n-2}}=0 \end{split}$$

which implies that each $\varphi_i = 0$ for $1 \le i \le n - 1$.

The proofs of Lemma 2.6 and Theorem 2.7 are similar to the proof of Lemma 2.2 and Theorem 2.3. Also see [2] for the certain Hilbert spaces of functions.

LEMMA 2.6. Let B be a Banach space of analytic functions and let $S \in \{M_{z^n}\}$ for some positive integer n. Suppose that $\mathcal{B}_i = \bigvee \{z^{nk+i} : k \geq 0\}$ for $i = 0, 1, 2, \dots, n-1$. If $f \in \mathcal{B}$ having decomposition $f = f_0 + f_1 + \cdots + f_{n-1}$, where $f_i \in \mathcal{B}_i$ for $i=0,1,\cdots,n-1$, then

$$S(f) = f\varphi_0 + \frac{f_1}{z}\varphi_1 + \frac{f_2}{z^2}\varphi_2 + \dots + \frac{f_{n-1}}{z^{n-1}}\varphi_{n-1},$$

where $\varphi_0 = S(1)$ and $\varphi_i = (SM_{z^i} - M_{z^i}S)(1)$ for i = 1, 2, ..., n-1, and hence

$$(SM_z - M_z S)(f) = \varphi_1 f_0 + f_1(\frac{\varphi_2}{z} - \varphi_1) + \cdots + f_{n-2}(\frac{\varphi_{n-1}}{z^{n-2}} - \frac{\varphi_{n-2}}{z^{n-3}}) + f_{n-1}(\frac{\varphi_{n-1}}{z^{n-2}}).$$

THEOREM 2.7. Under the conditions of Lemma 2.6 for \mathcal{B} , S, n, and \mathcal{B}_i . There is a function $\varphi \in \mathcal{M}(\mathcal{B})$ such that $S = M_{\varphi}$ if and only if $SM_z - M_zS$ is a compact operator.

COROLLARY 2.8. Let \mathcal{B} be a Banach space of analytic functions and let $S \in \{M_{z^{2n}}\}'$. Then $SM_{z^n} = -M_{z^n}S$ if and only if $SM_{z^n} + M_{z^n}S$ is compact.

Proof. Assume that $SM_{z^n} + M_{z^n}S$ is compact. Since $(SM_{z^n} + M_{z^n}S) \in \{M_{z^n}\}$ by Theorem 2.7, there is a function $\varphi \in \mathcal{M}(\mathcal{B})$ such that $SM_{z^n} + M_{z^n}S = M_{\varphi}$. Now since M_{φ} is compact, we have $\varphi = 0$.

THEOREM 2.9. Let \mathcal{B} be a Banach space of functions and let $S \in \{M_{z^n}\}'$ for some positive integer $n \geq 1$. If n is an odd integer and $SM_z + M_zS$ is compact, then S = 0. If n is an even integer and $SM_z + M_zS$ is compact, then $S = \tilde{M}_{\phi}$ for some function $\phi \in \mathcal{M}(\mathcal{B})$.

Proof. Let p be a polynomial having decomposition $p = p_0 + p_1 + \cdots + p_{n-1}$ where $p_i \in B_i$ for $i = 0, 1, 2, \cdots, n-1$. By Lemma 2.6 we have:

$$(SM_z + M_z S)(p) = S(zp) + zS(p)$$

$$= zp\varphi_0 + p_0\varphi_1 + \frac{p_1}{z}\varphi_2 + \cdots$$

$$+ \frac{p_{n-2}}{z^{n-2}}\varphi_{n-1} + zp\varphi_0 + p_1\varphi_1$$

$$+ \frac{p_2}{z}\varphi_2 + \cdots + \frac{p_{n-1}}{z^{n-2}}\varphi_{n-1}$$

$$= p_0(\varphi_1 + 2z\varphi_0) + p_1(\frac{\varphi_2}{z} + \varphi_1 + 2z\varphi_0) + \cdots$$

$$+ p_{n-2}(\frac{\varphi_{n-1}}{z^{n-2}} + \frac{\varphi_{n-2}}{z^{n-3}} + 2z\varphi_0) + p_{n-1}(\frac{\varphi_{n-1}}{z^{n-2}} + 2z\varphi_0).$$

Since $SM_z + M_zS$ is compact as in Theorem 2.3 we can see that

$$2z\varphi_0+rac{arphi_i}{z^{i-1}}=0; \quad ext{ for } \quad 1\leq i\leq n-1 \ ext{ and } i \ ext{ odd },$$

$$rac{arphi_i}{z^{i-1}}=0 \ ; \quad ext{ for } \quad 1\leq i\leq n-1 \ ext{ and } i \ ext{ even },$$

$$2z\varphi_0+rac{arphi_{n-1}}{z^{n-2}}=0.$$

Now if n is an odd number $\frac{\varphi_{n-1}}{z^{n-2}} = 0$ and so $2z\varphi_0 = 0$ that implies $\varphi_0 = 0$. Hence each $\varphi_i = 0$ for $i = 1, 2, \dots, n-1$ and S = 0. If nis an even number, then $\varphi_i = -2z^i\varphi_0$, for i odd and $1 \le i \le n-1$ and $\varphi_i = 0$ for i even and $1 \le i \le n-1$. Hence

$$S(f) = f\varphi_0 + \frac{f_1}{z}\varphi_1 + \frac{f_2}{z^2}\varphi_2 + \dots + \frac{f_{n-1}}{z^{n-1}}\varphi_{n-1} = \varphi_0\tilde{f} = \tilde{M}_{\varphi_0}(f).$$

Theorem 2.10. Let \mathcal{B} be a Banach space of analytic functions and let $S \in \{M_{z^{4n}}\}'$ for some positive integer n. There is a function $\varphi \in \mathcal{M}(\mathcal{B})$ such that $S = \hat{M}_{\varphi}$, if and only if $SM_z - iM_zS$ is compact.

Proof. We set $m = 4n, S(1) = \varphi_0$ and:

$$\varphi_j = (SM_{z^j} - iM_{z^j}S)(1) \quad \text{for} \quad 1 \leq j < m \quad \text{and}$$

$$j = 4k + 1 \quad \text{for some integer} \quad k$$

$$\varphi_j = (SM_{z^j} + M_{z^j}S)(1) \quad \text{for} \quad 1 \leq j < m \quad \text{and}$$

$$j = 4k + 2 \quad \text{for some integer} \quad k$$

$$\varphi_j = (SM_{z^j} + iM_{z^j}S)(1) \quad \text{for} \quad 1 \leq j < m \quad \text{and}$$

$$j = 4k + 3 \quad \text{for some integer} \quad k$$

$$\varphi_j = (SM_{z^j} - M_{z^j}S)(1) \quad \text{for} \quad 1 \leq j < m \quad \text{and}$$

$$j = 4k \quad \text{for some integer} \quad k.$$

Suppose $B_j = \bigvee \{z^{mk+j} : k \geq 0\}$ for $j = 0, 1, 2, \dots, m-1$ and $f \in B$ has a decomposition $f = f_0 + f_1 + \cdots + f_{m-1}$, where $f_i \in B_i$ for $j = 1, 2, \dots, m - 1$. As in Lemma 2.2 we can show that:

$$S(f) = \hat{f}\varphi_0 + \frac{f_1}{z}\varphi_1 + \frac{f_2}{z^2}\varphi_2 + \dots + \frac{f_{m-1}}{z^{m-1}}\varphi_{m-1}$$

and

$$(SM_z - iM_z S)(f) = \varphi_1 f_0 + f_1(\frac{\varphi_2}{z} - i\varphi_1) + \cdots + f_{m-2}(\frac{\varphi_{m-1}}{z^{m-2}} - i\frac{\varphi_{m-2}}{z^{m-3}}) - if_{m-1}(\frac{\varphi_{m-1}}{z^{m-2}}).$$

Now if $SM_z - iM_zS$ is a compact operator by a similar argument as in Theorem 2.3 we can show that $S = \hat{M}_{\varphi_0}$. The converse is obvious.

THEOREM 2.11. Suppose \mathcal{B} is a Banach space of analytic functions, $S \in L(\mathcal{B})$ and $SM_{z^{4n}} = -M_{z^{4n}}S$ for some positive number n. There is a function φ in $\mathcal{M}(\mathcal{B})$ such that $S = \hat{M}_{\varphi}$ if and only if $SM_z + iM_zS$ is compact.

References

- 1. Z. Cuckovic, Commutant of Toeplitz operators on the Bergman spaces, Pacific. J. Math. 162 (1994), 277-285.
- B. Khani Robati, On the commutant of certain multiplication operators on spaces of analytic functions, Rendiconti del Circolo Matematico di Palermo, Serie II - Tomo XLIX (2000), 601-608.
- K. Seddighi, K. Hedayatiyan, B. Yousefi, Operator acting on certain Banach spaces of analytic functions, Internat. J. Math. & Math. Sci. 18 No. 1 (1995), 107-110.
- K. Seddighi and S. M. Vaezpour, Commutant of certain multiplication operator on Hilbert spaces of analytic functions, Studia Math. 133(2) (1999), 121-130.

- 5. A. Shields, Weighted shift operators and analytic function theory, Topics in operator theory, Math Survey, No.13, Amer. Math. Soc., Providence, R. I., 49-128.
- 6. B. Yousefi, On the spaces $\ell^p(\beta)$, Rendiconti del Circolo Matematico di Palermo,.
- 7. B. Yousefi, Unicellularity of the multiplication operator on Banach spaces of formal power series, to appear in Studia Math.