ON THE TAYLOR-BROWDER SPECTRUM

IN HO JEON AND WOO YOUNG LEE

ABSTRACT. In this paper we extend the Zemanek's characterization of the Browder spectrum for a commuting n-tuple of operators in $\mathcal{L}(H)$ and show that if $\mathbf{T}=(T_1,\cdots,T_n)$ is Browder then there exists an n-tuple $\mathbf{K}=(K_1,\cdots,K_n)$ of compact operators and an invertible commuting n-tuple (S_1,\cdots,S_n) for which $\mathbf{T}=\mathbf{S}+\mathbf{K}$ and $S_iK_j=K_jS_i$ for all $1\leq i,j\leq n$.

1. Introduction

Suppose H is a complex Hilbert space and write $\mathcal{L}(H)$ for the set of all bounded linear operators acting on H. Let $\mathbf{T} = \{T_1, \dots, T_n\}$ be a commuting n-tuple of operators in $\mathcal{L}(H)$ and let $\Lambda[e] = \{\Lambda^k[e_1, \dots, e_n]\}_{k=0}^n$ be the exterior algebra on n generators $(e_i \wedge e_j = -e_j \wedge e_i \text{ for all } i, j = 1, \dots, n)$. Write $\Lambda(H) = \Lambda[e] \otimes H$. Let $\Lambda(\mathbf{T}) : \Lambda(H) \longrightarrow \Lambda(H)$ be given by

$$\Lambda(\mathbf{T})(\omega \otimes x) = \sum_{i=1}^{n} (e_i \wedge \omega) \otimes T_i x.$$

The operator $\Lambda(\mathbf{T})$ can be the represented by the Koszul complex for \mathbf{T} :

$$0 \longrightarrow \Lambda^0(H) \xrightarrow{\Lambda^0(\mathbf{T})} \Lambda^1(H) \xrightarrow{\Lambda^1(\mathbf{T})} \cdots \xrightarrow{\Lambda^{n-1}(\mathbf{T})} \Lambda^n(H) \longrightarrow 0,$$

where $\Lambda^k(H)$ is the collection of k-forms and $\Lambda^k(\mathbf{T}) = \Lambda(\mathbf{T})|_{\Lambda^k(H)}$. Evidently, $\Lambda(\mathbf{T})^2 = 0$, so that ran $\Lambda(\mathbf{T}) \subseteq \ker \Lambda(\mathbf{T})$. We recall ([4],[8],[9]) that \mathbf{T} is said to be (Taylor) invertible if $\ker \Lambda(\mathbf{T}) = \operatorname{ran}\Lambda(\mathbf{T})$ (i.e., the Koszul complex for \mathbf{T} is exact at every stage.) and is said to be

Received April 11, 1996. Revised July 26, 1996.

¹⁹⁹¹ AMS Subject Classification: Primary 47A13; Secondary 47A10,47A53.

Key words and phrases: Taylor-Browder spectrum, Riesz-Schauder spectrum.

The present study was partially supported by the BSRI-95-1420.

(Taylor) Fredholm if $\ker\Lambda(\mathbf{T})/\operatorname{ran}\Lambda(\mathbf{T})$ is finite dimensional (i.e., all cohomologies of the Koszul complex for \mathbf{T} are finite dimensional.). We shall write $\sigma_T(\mathbf{T})$ and $\sigma_{Te}(\mathbf{T})$ for the Taylor spectrum and the Taylor essential spectrum of \mathbf{T} , respectively: namely,

$$\sigma_T(\mathbf{T}) = \{\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{C}^n : \mathbf{T} - \lambda \text{ is not invertible}\}$$

and

$$\sigma_{Te}(\mathbf{T}) = \{\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{C}^n : \mathbf{T} - \lambda \text{ is not Fredholm}\}.$$

We also recall ([5],[6],[8],[9]) that **T** is said to be (Taylor)Browder if **T** is Fredholm and there exists a deleted open neighborhood N_0 of $0 \in \mathbb{C}^n$ such that $\mathbf{T} - \lambda$ is invertible for all $\lambda \in N_0$. Then the Taylor-Browder spectrum, $\sigma_{Tb}(\mathbf{T})$, is defined by

$$\sigma_{Tb}(\mathbf{T}) = \sigma_{Te}(\mathbf{T}) \cup \mathrm{acc}\,\sigma_{T}(\mathbf{T}).$$

where $\operatorname{acc} \sigma_T(\mathbf{T})$ denotes the set of accumulation points of the Taylor spectrum of \mathbf{T} . In this paper we consider a characterization of the Taylor-Browder spectrum and a Riesz-Schauder theorem for a commuting n-tuple of operators.

2. A characterization of the Taylor-Browder spectrum

For a single operator T acting on a Banach space, Zemānek ([14, Theorem 1, (2)]) characterized the Browder spectrum as the intersection of the ordinary spectra of compressions to subspaces with finite codimensions. In this section we extend the Zemānek's characterization for a commuting n-tuple of operators in $\mathcal{L}(H)$. If M is a common invariant subspace of H for each T_i in $\mathcal{L}(H)$, we denote an n-tuple of compressions to M by $\mathbf{T}_M = (T_{1\,M}, \cdots, T_{n\,M})$.

The following observation was, basically, noticed in [4] and [12]:

LEMMA 1. Let $\mathbf{T} = (T_1, \dots, T_n)$ be a commuting n-tuple of operators in $\mathcal{L}(H)$. If P is a continuous projection commuting with each T_i , then

(1.1)
$$\sigma_T(\mathbf{T}) = \sigma_T(\mathbf{T}_{PH}) \cup \sigma_T(\mathbf{T}_{(I-P)H}).$$

PROOF. Since the subspace PH reduces each T_i and $\Lambda(H)$ is just $\Lambda[e] \otimes (PH \oplus (I-P)H), \Lambda(\mathbf{T})$ admits the following operator matrix representation:

$$\Lambda(\mathbf{T}) = \begin{pmatrix} \Lambda(\mathbf{T})_{\Lambda(PH)} & 0 \\ 0 & \Lambda(\mathbf{T})_{\Lambda((j-P)H)} \end{pmatrix}$$

with respect to the decomposition $\Lambda(H) = \Lambda(PH) \oplus \Lambda((I-P)H)$. Thus we see that the Koszul complex for **T** is exact if and only if the Koszul complex for \mathbf{T}_{PH} and $\mathbf{T}_{(I-P)H}$ are both exact, which implies (1.1).

Let $\mathcal{P}(H)$ denote the set of all projections in H with a finite codimension. For any $P \in \mathcal{P}(H)$ the compression of T is a bounded linear operator on the closed subspace P(H) defined by $T_{PH}x = PTx$ for each $x \in PH$. The following is a generalization of Zemānek's result for a commuting n-tuple of operators in $\mathcal{L}(H)$:

THEOREM 2. If $\mathbf{T} = (T_1, \dots, T_n)$ is a commuting n-tuple of operators in $\mathcal{L}(H)$, then

(2.1)
$$\sigma_{Tb}(\mathbf{T}) = \bigcap_{P \in \mathcal{P}(H)} \{ \sigma_T(\mathbf{T}_{PH}) | PT_i = T_i P \}.$$

PROOF. Suppose that $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{C}^n$ is in $\sigma_{Tb}(\mathbf{T})$. If λ does not in the right-hand side of (2.1), then there exists a projection $P \in \mathcal{P}(H)$ such that $\lambda \notin \sigma_T(\mathbf{T}_{PH})$ and $PT_i = T_iP$. Thus we have a spectral formula (1.1):

(2.2)
$$\sigma_T(\mathbf{T}) = \sigma_T(\mathbf{T}_{PH}) \cup \sigma_T(\mathbf{T}_{(I-P)H}).$$

Thus $\lambda \in \sigma_T(\mathbf{T}_{(I-P)H})$, and hence $\lambda \in \mathrm{iso}\sigma_T(\mathbf{T})$ because $\lambda \notin \sigma_T(\mathbf{T}_{PH})$ and (I-P)H is a finite subspace of H. Thus an argument of Fialkow([7, Lemma 2.1]) gives that $\lambda \notin \sigma_{Te}(\mathbf{T})$ because the spectral subspace of λ is contained in (I-P)H. This leads a contradiction. Conversely, suppose that $\lambda \notin \sigma_{Tb}(\mathbf{T})$. Since $\lambda \in \mathrm{iso}\sigma_T(\mathbf{T})$, we can find a projection Q with respect to λ ([12, Theorem 4.8]) such that $Q'I_i = T_iQ$, the spectral subspace of λ is QH, and $\lambda \notin \sigma_T(\mathbf{T}_{(I-Q)H})$. Putting P = I - Q gives that $P \in \mathcal{P}(H)$ and $\lambda \notin \sigma_T(\mathbf{T}_{PH})$. Thus the proof is completed. \square

3. A Riesz-Schauder theorem

For a single operator $T \in \mathcal{L}(H)$, the Riesz-Schauder theorem ([8],[13]) says that

T is Browder
$$\iff T = S + K$$
,

where S is invertible, K is compact and SK = KS. Therefore we meet a natural question:

QUESTION. Can be the Riesz-Schauder theorem extended for commuting n-tuples of operators?

In this section we discuss the above question. R.E. Harte ([8, Problem 11.10.5, p.557]) suggested a half of the above question. The following theorem gives the "only if" part of the Riesz-Schauder theorem and also answers a question of R.E. Harte; the answer is yes.

THEOREM 3. If **T** is Browder, then there exists an n-tuple $\mathbf{K} = (K_1, \dots, K_n)$ of compact operators such that $\mathbf{T} = \mathbf{S} + \mathbf{K}$ where $\mathbf{S} = (S_1, \dots, S_n)$ is an invertible commuting n-tuple and $S_iK_j = K_jS_i$ for all $1 \leq i, j \leq n$.

PROOF. If **T** is Browder but not invertible then **T** is Fredholm and $0 \in \text{iso}_{T}(\mathbf{T})$. The arguments of Taylor ([12, Theorem 4.9; Corollary 4.10]) give that there exists a projection $P \in \mathcal{L}(H)$ satisfying that P commutes with each T_i , \mathbf{T}_{PH} is a commuting n-tuple of quasinilpotent operators and $0 \notin \sigma_T(\mathbf{T}_{(I-P)H})$. In particular, P is of finite rank and hence compact. Now consider the following commuting n-tuple:

$$\mathbf{T} + \mathbf{P} = (T_1 + P, \cdots, T_n + P),$$

where $\mathbf{P} = (P, \dots, P)$. Then by Lemma 1,

$$\sigma_T(\mathbf{T} + \mathbf{P}) = \sigma_T((\mathbf{T} + \mathbf{P})_{PH}) \cup \sigma_T((\mathbf{T} + \mathbf{P})_{(I-P)H}).$$

Clearly, we have $0 \notin \sigma_T((\mathbf{T} + \mathbf{P})_{(I-P)H})$. Since a commuting quasinilpotent perturbation of an invertible operator is also invertible, it immediately follows that $0 \notin \sigma_T((\mathbf{T} + \mathbf{P})_{PH})$. Thus $0 \notin \sigma_T(\mathbf{T} + \mathbf{P})$, which says that $\mathbf{T} + \mathbf{P}$ is invertible. Hence the proof is completed with $\mathbf{S} = \mathbf{T} + \mathbf{P}$ and $\mathbf{K} = -\mathbf{P}$. \square

REMARK. A joint Weyl spectrum, $\omega(\mathbf{T})$, for a commuting *n*-tuple **T** is defined by ([1],[2], [3])

(3.1)

$$\omega(\mathbf{T}) = \bigcap \{ \sigma_T(\mathbf{T} + \mathbf{K}) : \mathbf{K} \text{is an } n - \text{tuple of compact operators and } \mathbf{T} + \mathbf{K} = (T_1 + K_1, \dots, T_n + K_n) \text{is a commuting } n - \text{tuple} \}.$$

In [9], we suggested a question: does it follow that $\omega(\mathbf{T}) \subseteq \sigma_{Tb}(\mathbf{T})$? Theorem 2 answers the question: the answer is yes.

We were unable to decide whether or not the converse of Theorem 2 is true. However we can show that the converse is true for an interesting class containing normal n-tuples(cf. [10]). To see this, we recall that a point $\lambda = (\lambda_1, \dots, \lambda_n) \in \mathbb{C}^n$ is called a *joint eigenvalue* of $\mathbf{T} = (T_1, \dots, T_n)$ if there exists a nonzero vector x in H for which

$$(T_i - \lambda_i) x = 0$$
 for each $i = 1, \dots, n$.

We write $\sigma_p(\mathbf{T})$ for the set of all joint eigenvalues of \mathbf{T} and $\pi_0(\mathbf{T})$ for the set of all joint eigenvalues of \mathbf{T} of finite multiplicity. We now consider the following property that $\mathbf{T} = (T_1, \dots, T_n)$ may satisfy:

$$(\alpha) \hspace{1cm} \pi_0(\mathbf{T}) = \overline{\pi_0(\mathbf{T}^*)} \hspace{0.2cm} \text{and the corresponding joint eigenspaces of}$$
$$\lambda \in \pi_0(\mathbf{T}) \hspace{0.2cm} \text{and} \hspace{0.2cm} \overline{\lambda} \in \pi_0(\mathbf{T}^*) \hspace{0.2cm} \text{are all equal.}$$

Here $\mathbf{T}^* = (T_1^*, \dots, T_n^*)$ and \overline{K} denotes the set of complex conjugates of elements in K.

COROLLARY 4. If $\mathbf{T} = (T_1, \dots, T_n)$ is a doubly commuting n-tuple of dominant operators and satisfies the property (a). Then \mathbf{T} is Browder if and only if there exists an n-tuple $\mathbf{K} = (K_1, \dots, K_n)$ of compact operators such that $\mathbf{T} = \mathbf{S} + \mathbf{K}$ where $\mathbf{S} = (S_1, \dots, S_n)$ is an invertible commuting n-tuple of operators and $S_iK_j = K_jS_i$ for all $1 \leq i, j \leq n$.

PROOF. In the view of Theorem 3, it suffices to show "if" part. If there exists an n-tuple \mathbf{K} of compact operators such that $\mathbf{T} = \mathbf{S} + \mathbf{K}$, where \mathbf{S} is an invertible commuting n-tuple of operators, then it is evident that \mathbf{T} is Fredholm. In turn, by [10, Theorem 2.2], 0 is an isolated point of $\sigma_T(T)$, which implies that \mathbf{T} is Browder.

References

- M. Chō, On the joint Weyl spectrum II, Acta Sci. Math.(Szeged) 53 (1989), 381-384.
- On the joint Weyl spectrum III, Acta Sci. Math. (Szeged) 53 (1992), 365-367.
- 3. M. Chō and M. Takaguchi, On the joint Weyl spectrum, Sci. Rep. Hirosaki Univ. 27 (1980), 47-49.
- 4. R. E. Curto, Fredholm and invertible n-tuples of operators. The deformation problem, Trans. Amer. Math. Soc. 266 (1981), 129-159.
- R. E. Curto and A. T. Dash, Browder spectral systems, Proc. Amer. Math. Soc. 103 (1988), 407-412.
- 6. A. T. Dash, Joint Browder spectra and tensor products, Bull. Austral. Math. Soc. 32 (1985), 119-128.
- L. A. Fialkow, The index of an Elementary operator, Indiana Univ. Math. J. 35 (1986), 73-102.
- 8. R. E. Harte, Invertibility and singularity for bounded linear operators, Dekker, New York, 1988.
- 9. I. H. Jeon and W. Y. Lee, On the Taylor-Weyl spectrum, Acta Sci. Math. (Szeged) 59 (1994), 187-193.
- Isolated points of the Taylor spectrum, Hokkaide Math. Jour. 24 (1995), 337-345.
- 11. J. L.Taylor, A joint spectrum for several commuting operators, J. Funct. Anal. 6 (1970), 172-191.
- 12. _____, The analytic functional calculus for several commuting operators, Acta Math. 125 (1970), 1-38.
- 13. T. T. West, A Riesz-Schauder theorem for semi-Fredholm operators, Proc. Roy. Irish Acad. 87A (1987), 137-146.
- 14. J. Zemānek, Compressions and the Weyl-Browder spectra, Proc. Roy. Irish Acad. 86A (1986), 57-62.

Department of Mathematics Sung Kyun Kwan University Suwon, 440-746, Korea