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ELLIPTIC SYSTEMS INVOLVING COMPETING
INTERACTIONS WITH NONLINEAR DIFFUSIONS II

IN KYyuNGg AHN

ABSTRACT. In this paper, we give sufficient conditions of certain ellip-
tic systems involving competing interactions with nonlinear diffusion
rates. The existence of positive solution depends on the sign of the
first eigenvalue of operators of Schrddinger type. More precisely, if the
sign of such operators are either both positive or both negative, then
system has a positive solution. The main tool employed is the fixed
point index of compact operator on positive cones.

1. Introduction and Existence Theorem

In this paper, we will investigate the existence of positive solutions to
the following elliptic systems representing competing interaction:

—¢(u,v)Au = uf(u,v)
(1.1) —Y(u,v)Av = vg(u,v) in Q
(u,v) = (0,0) on 0N

where ) is a bounded region in R™ with a smooth boundary and ¢, ¥ are
strictly positive nondecreasing functions. Also u, v represent the densities
of certain two species which compete each other. Several results have
been obtained for the system (1.1) under Dirichlet or Neumann boundary
conditions where the diffusion terms are positive constants, not nonlinear
functions. See [4], (8], [9], [10], [11].

It was shown in [2] that the existence of positive solution of the system
(1.1) depends on the sign of the first eigenvalue of operator of Schrédinger
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type. i.e., the positive solutions exist if the sign of the first eigenvalues of
those operators both are positive.

In this paper, we will show that the positive solutions exists even if
the first eigenvalue of the above operators are both negative. The main
tool employed is the theorem concerning the fixed point index of compact
operator on positive cones.

For the system (1.1) with competing interactions, we expose the fol-
lowing assumptions:

(H1) £, g € C'(R*,R") satisfy

fulu,v) <0,  fy(u,v) <0 foru,v>0
gu(u,v) <0, gy(u,v) <0 foru,v>0
f(0,0) >0, ¢(0,0)>0
(H2) There exist positive constants C'y, C such that
f(u,0) <0 foru>C

9(0,v) <0 forv>Cs
(H3) f(-,v), g(u,-) are Lipschits continuous for fixed u, v € R" and
concave down where f(-,v) < 0, g(u,-) < 0, respectively.
(H4) o, ¥ are strictly positive C'-function in u, v, respectively, and
nondecreasing, concave down in u, v € R*.

Throughout this paper, A;(A) denote the first eigenvalue of operator A
on ) with homogeneous Dirichlet boundary conditions.
The following lemma appears in [1].

LEMMA 1.1. Assume that y is strictly positive, nondecreasing and con-
cave down, and h is monotone nondecreasing C*-function with f(z,0) > 0.
If M\ (o(z,0)A + f(z,0)) > 0, then the equation

{ —p(z, W)Au = uf(z,v)
u=20 on 09}

has a unique positive solution in C*(Q).

By the above lemma, if A;((0,0)A + f(0,0)) > 0 in addition to (H1)-
(H4), then there is a semi-trivial solution (ug,0) to (1.1) where ug is the
positive solution to

{ p(uw)Au +uf(u) =0
u=20 on 0f2
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Similarly, if A;(1/(0,0)A+g(0,0)) > 0, then there is a semi-trivial solution
(0,vp) to (1.1) where vy is the positive solution to

{ Y(v)Av +vg(v) =0
v=20 on 0}

In section 3, we show that these solutions (g, 0) and (0, Vo) are used to
give the sufficient conditions for the existence of positive solutions to the
system (1.1).

Now we state the existence theorem of our system (1.1).

THEOREM 1.2. Suppose that the assumptions (H1)-(H4) hold. Assume
that A1((0,0)A + £(0,0)) > 0 and A; ((0,0)A + ¢(0,0)) > 0.
(i) If (u,v) is a strictly positive solution to (1.1), then

0 <u(z) <uo(z) <Ci, 0<v(z)<vo(z) < Co

(ii) If the first eigenvalues of the operator ©(0,v9)A + f(0,vp)] and
¥(uo,0)A + g(uo, 0)1 are both negative or both positive, then the system
(1.1) has a positive solution (u,v).

2. Preparations

We state some known lemmas and theorems which will serve as the
basic tools in this paper.

Let E be a real Banach space and W C F a closed convex set. W is
called a wedge if aW C W for all @ > 0. A wedge is sade to be a cone if
W N (-W) = {0}. For y ¢ W, define

Wy={z€E|y+~yzeW forsome v > 0}
Sy={zeW,| —zecW,}
Then Wy is a wedge containing W, y, —v, while S, is a closed subspace of
E containing y. Let T' be a compact linear operator on E which satisfies
T(W,) C W,. We say that T has a property o on W, if thereis at € (0, 1)
and a w € W,\S, such that w — tTw Sy.

Let A: W — W is a compact operator with fixed point ye Wand A
is Fréchet differentiable at y. Let L = A’(y) be the Fréchet derivative of
A at y. Then L maps W, into itself.

For an open subset U C W, define index(A4, U, W) = degyw (I — A, U, 0).
To have degy, well defined we require that W be a retract of E. By a result
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of Dugundji, every closed convex subset of real Banach space F is a retract
of E. Since W is a wedge in E, W is a retract of E. We also have that .S,
is a retract of E. Hence the above index is well defined. If y is an isolated
fixed point of A, then the fixed point index of A at y in W is defined
by indezw (A, y) = index(A,y, W) = index(A,U(y), W), where U(y) is a
small open neighbourhood of y in W. We have the following proposition:

PROPOSITION 2.1. Assume that I — L is invertible on E.

(i) If L has property o on W,, then indezw(A,y) = 0.

(ii) If L does not have property & on W, then indezw (A, y) = (~1)°,
where o is the sum of multiplicities of all the eigenvalues of L which are
greater than 1.

PROOF. See [5], [9] for the details. a

Next we state the extended maximum principle. Consider operator

Au = a(z)Au + b(z)u, u = 0 on 0.
PROPOSITION 2.2. Let a,b € L®(Q). If A\j(a(z)A + b(z)I) < 0 holds

and u(z) Is any nonconstant function satisfying

a(z)Au + b(z)u > 0
u=20 on 01},

then u(z) < 0 in Q.
PROOF. One can modify the proof of Lemma 2.2 in [10]. O

Suppose that ¢ is strictly positive, nondecreasing and concave down,
and f is monotone nonincreasing C'-function with f(0) > 0. Let uy be a
unique positive solution to the equation

—p(, ) Au = uf(z, v)
u=20 on ON.

We shall linearlize the above equation at © = ug > 0. Define the solution

operator : S € C(Q) by S(u) = @, where 4 is the unique solution of
—p(z,8)At + Mu = uf(z,u) + Mu
=0 on Of.

where M > 0 is sufficiently large. Note that S{ug) = up. Also we define
the operator S; of linearization by Sp(w) = v, where v is the unique
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solution of
—¢(2,u0)Av + Mv = wf(z,uo) + wug fu(x, ug) + Mw
v=20 on 05

Now we have the following lemma.

LEMMA 2.3. S is Fréchet differentiable at u = uy € C(f) and S'(ug) =
Sk
PROOF. We need to show that
15(u0 +w) = S(w) — Sy (w)|| = offjw]))

where the norm is taken in C(Q). Replace w by u for convenience. Let
[ulloo be small. Denote @ = S(uq + u), and v = Sr.(w). Then we have

—Au+ Ma/p(z,a) = (uo + u) f(z, up + u) /o(z, &) + M(up + u)/p(z, @)
—Aug + Muo/p(z,u0) = uof(z, ug)/(z, ug) + Mug/p(z, up)

— Av+ Mv/o(z,u0) = uf(z, up)/o(x, ug) + Mu/op(z, up)
+ wu fu(z, uo) /p(z, up).
From the above three equations

{ —o(7, u0) AT — ug — v) + M (T — ug —v) = oz, ug)[A — B]
(B—uy—v)=0 on 0N}

where

A= ulf(z,uo +u)/p(z,a) - f(z,u0)/(z, u0)] + uo[f (z, uo +u) /p(x, 1)
= 2, u0)/p(2, u0) — ufu(z, wo) /p(z, uo)] + Mull /p(z,a) — 1/p(z, up)]
+ Mug[1/p(z, @) — 1/p(z, up)]
B = Ma(1/9(z,9) - 1/p(z, ).
Noting that as @ > 0, @ > uy = S(up) and ||ii]|ee = o(Jlulleo)s Jluolleo =
o([[ufloo), it is easy to see that || A—B|| = o([1“]loo)- Therefore ||.S(ug+u)—
S(uo) = St(w)|| = ||& — ug — v|| = o(||t]|eo). This completes the proof. 0O

LEMMA 2.4. Suppose a € C}(Q), b € L™(Q2). Then there exists u >
0 € C*(Q) and a unique \; such that

a(z)Au+b(z)u = A\ju in Q
u=_0 on 0f2.

Moreover, )\, is increasing in a(z) and in the ratio b(z)/a(x).
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LEMMA 2.5. The only solution to the linearized problem
{ '—‘(,O(CE,’U.())A'U) = 'U)[f(.’l?, UO) + U'Ofu(x7 u(')]

w=20 on 0f2
where uy is a unique solution to the equation
—¢p(z,u)Au = uf(z,u)
(21) { =10 on 09
isw=20.

PROOF. First observe that A;(¢(z,ug)A + f(z,up)l) = 0 since vy > 0
and ug is a solution. Since f(z,u) is strictly decreasing in u and ug > 0,
we have f(z,uo) +uofu(z,up) < f(z,up). Therefore using Lemma 2.4, we
have

Mlp(z,uo)A + [f(z, uo) + uofulz, uo)[I] < Mlo(z, uo)A + f(z,u0)I] =0
Thus w = 0 by using the maximum principle (Proposition 2.2) to imply
the uniqueness of solutions to equation (2.1). O

The following two lemmas can be found in Amann [3].
Let (E, P) be an arbitrary ordered Banach space with its usual positive
cone P.

LEMMA 2.6. Let f : P, — P be a compact map, where P, = B,(0)N P,
p>0. If f(x) # Az for any x € S} := (0B,(0)) N P and every A > 1,
then indexp(f, P,) = 1.

LEMMA 2.7. Let f : P, — P be a compact map such that f(0) =
0. Suppose that f has a right derivative f'(0) at zero such that 1
is not an eigenvalue of f',(0) corresponding to a positive eigenfunction.
Then there exists a constant oy € (0, p| such that for every o € (0, 0y,
indexzp(f, P,) = 0 if f}(0) has a positive eigenfunction corresponding to
an eigenvalue greater than one.

Let T' : E — FE be a linear operator on a Banach space. Denote the
spectral radius of T by r(T).

LEMMA 2.8. Assume that T is a compact positive linear operator on
an ordered Banach space. Let u > 0 be a positive element. Then

(i) If Tu > u, then r(T) > 1.

(ii) If Tu < u, then r(T) < 1.

(iii) If Tu = u, then r(T) = 1.
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3. Proof of Theorem 1.2

It is not hard to see that using strong maximum principle, if (u(z),v(z))
is a positive solution of the system (1.1), then

0 <wu(z) <up(z) < Cp, 0<v(x) < vo(z) < Co.

(See the proof of Lemma 5 in [2].)

We will prove the result for the case which the first eigenvalues of two
operators in Theorem 1.2 (ii) are both negative. One can refer to [1] for
the other case.

By continuity of the functions f, g, u, v on a compact set ), we can
find M > 0 large enough that

max{max | f(u(z), v(z))|, max |g(u(z), v(z))[} < M
Define operator :
A(u,v)
= [(“‘P(" U)A+M)_l[uf(u’ U)+Mu]a (—¢(U, ')A—‘_M)—l[vg(ua ’U)—+—M’U”

Then A is the direct sum of positive compact operator. Note that
system has a solution (u,v) if and only if (u,v) is a fixed point of A.
We introduce the following notations.

D:={(u,v) e Co(Q) D Co(R) |u<Cy+1, v < Cp + 1}
K:={ueCy()|0<u(z), zcQ}
W=KeK
Pyo={(y,v) eW|u<p, v<p}, p>0
D' := (intD) N (K & K)

Note that D' is open in W. Now we will prove Theorem 1.2 by the sequence
of lemmas.

LEMMA 3.1. Assume X\ ((0,0)A + £(0,0)) > 0 and A1(9(0,0)A +
9(0,0)) > 0. Then

indez(A, D', K ® K) =1
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PROOF. Let p = max{C,C,} + 1. Then it is easy to see that A has no
fixed points on the boundary of P,, 9F,. So A; = 1 is not an eigenvalue
of A with eigenvector on 0P,

Suppose that there is a pair (¢, ¢2) € OF, for some A > 1 such that
A(¢1, 92) = AM(¢1, ¢2). Then we have

©(Ad1, #2) A1 + &1 f(d1,P2) /A = (M — M/X),
V(d1, Ad2) Ay + ¢2g(d1, d2)/ A = (M — M/X)p2

If ¢, attains its maximum at zo, i.e., ¢1(zg) = p, then A¢p;(zp) < 0 and
@(A@1(zp)) > 0. Thus it follows that f(¢1(zo), d2(20)) > 0. However, by
the fact ¢ (zo) > C; and assumptions (H1)-(H2),

f(¢1($0), ¢2($0)) < f(d)l(mo)a 0) < f(ChO) = 07

which is a contradiction. Therefore A > 1 can not be an eigenvalue of
A with eigenvector (¢1,¢2) € 9P,. Thus by Lemma 2.6, we have that
indezw (A, P,) = 1. O

LEMMA 3.2. Assume that A;(p(0,0)A+ f(0,0)) > 0 and A ((0,0)A+
9(0,0)) > 0. Then
indezw (A4, (0,0)) =0.

ProOF. We have A(0,0) = (0,0) and A is compact on P,. We intro-
duce the notations for the simplicity. Let
H(u,v) = (—¢(u,v)A + M)~
R(u,v) := (—(u,v)A + M)™".
Set
H(0,0)[f(0,0) + M] 0
0 R(0,0)(g(0,0) + M]

Suppose that 1 is an eigenvalue of L with a positive eigenvector (¢, ¢2),

.€., ¢1 ) ¢1
(%)-1(%)
H(0> 0)—1¢1 = (f(07 0) + M)d)l
R(0,0)" ¢y = (9(0,0) + M)¢»

L= A(0,0) = [

Then we have

Hence

A1(#(0,0)A + £(0,0)) = Ai(4(0,0)A + ¢(0,0)) = 0
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which is a contradiction. Thus 1 is not an eigenvalue of L.

We claim that there exists A; > 1 and a corresponding positive eigen-
value of L.

Let u := Ai((0,0)A + f(0,0)) > 0 and ¢; the corresponding pos-
itive eigenfunction. Then ¢(0,0)A¢; + f(0,0)¢; = u¢; > 0. Hence
H(0,0)"'¢y < (f(0,0)+M)¢;. Thus it follows that T, := H(0,0)(f(0, 0)
+ M)¢1 > ¢1. So by Lemma 2.8, r[H(0,0)(f(0,0) + M)] > 1. Us-
ing the Krein-Rutman theorem, we have that r(T) is an eigenvalue of
T with positive eigenfunction ¢;. Thus if we consider the pair (¢3,0)
and A = 7(T) > 1, we have an eigenvalue greater than one with a
positive eigenfunction. By using Lemma 2.7, we have that there exists
oo € (0, p| such that indezy (A, P,) = 0 for any 0 < ¢ < 0y. On the
other hand, since (0,0) is isolated, there exists § > 0 such that (0,0)
is the only fixed point of A in P;. If we take 0 < min{oy,d}, then
indezw (A, (0,0)) = indezw (A4, P,) = 0. O

LEMMA 3.3. Assume that A;(¢(0,0)A+ £(0,0)) > 0 and A ((0, 0)A+
g(0,0)) > 0. If
A1(9(0,v0)A + f(0,v0)]) < 0
Al (’(Z)(U(), O)A + g('LL(), O)I) < O,
then
indezw (A, (4, 0)) = indezw (A4, (0,v0)) = 1

ProoF. We will only calculate indexy (A, (uo, 0)) since we can argue
similarly for the case indezw (A, (0,vp)).

Recall W, = Co(Q2) ® K and

L := A'(uy,0)

’LL(), )[f(UO’ 0) + uOfu(u07 + M] (an )[UOfv(UOa )l
0 R(U'Oa O)[ (UO) ) + M]

First we show that / — L is invertible on Cy(Q2) & Co(£2).
Suppose that there exists functions ¢y, ¢o € Cy(f2) such that

nhY_[h
L(@)‘(@)’
ie.,

H(uo, 0)[ f(uo, 0) + uo fulto, 0) + M]¢1 + R(ug, 0)[uo fo(uo, 0)]¢2 = ¢
R(uo, 0){9(uo, 0) + M|y = ¢2
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Then it implies that
(3.1)  (uo, 0)Ady + [f(uo, 0)uo fuluo, 0)]dr = —g fo(uo, 0)¢2

and
(3.2) Y(uo, 0)Ada + g(ug, 0)po =0

(¢1,¢2) = (0,0) on O
Suppose ¢ Z 0. Then 0 is an eigenvalue of ¥(ug, 0)A + g(ug, 0)I) from
(3.2), which is a contradiction due to Ay ((ug, 0)A + g(ug, 0)I) < 0. Thus
¢2 = 0. So (3.1) becomes

{ ©(u0,0)Ady + [f(uo, 0) + ug fu(uo, 0)]¢h =0
¢1=0 on Of).

Then from Lemma 2.5, we have that ¢, = 0. Therefore (¢1, ¢2) = (0,0)
and I — L is invertible on Cy($2) & Co(12). )
Next we show that L does not have property o in W,,. Recalling
. Sy =Co() ® {0}
WS, = Co() & {K\{0}},
we suppose L has property o in Wy. Then there exists a 0 < ¢t < 1 and
functions (¢y, ¢2) € W\ S, such that

(I-tL)(gi ) € Sy,

ie.,

(3.3) ¢ — t[H(uo,0)(f(uo,0) + ugfu(uo, 0) + M)e;
+ H(uo, 0)[uo fu(uo, 0)]d2] € Co(2)

(34) ¢2 - tR('U.(], O)[g(an O) + M]¢2 =0

Note that equation (3.3) holds for arbitrary ¢;, ¢, and from equation
(3.4), using the fact ¢ € K\{0}, we have if T := R(uo, 0)(g(uo, 0) + M),
then ( —tT)¢2 = 0. So Ty = ¢o/t > ¢po. Thus 7(T) > 1 by Lemma 2.8.
On the other hand, using the assumption A;(¢(ug, 0)A + g(uo,0)I) < 0,
one can show that 7(T') < 1, which is a contradiction. Hence L does not
have property a in W,. Thus by Proposition 2.1 (ii} we conclude that

indexw (A, (ug,0)) = indexg(L, (0,0)) = +1
where £ = Cy(2) @& Co(Q2).
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Now we calculate indexg(L, (0,0)) by using the formula
indexgp(L, (0,0)) = (-1)°

where o is the sum of the multiplicities of the eigenvalues of L > 1.
Suppose that A is an eigenvalue of L with eigenvector (¢1,¢2). Then we
have

H (ug, 0)[f (uo, 0) + uo fuluo, 0) + M)y + uofo (1o, 0)d] = Ay

R(uo, 0)[g(uo, 0) + Mg = As.

Then Ty = Ap, where T is as above. Since r(T') < 1, we have A <
1. So there is no eigenvalues of L greater than 1. Hence ¢ = 0 and
indexy (A, (up, 0)) = 1. O

PROOF OF MAIN THEOREM 1.2. By Lemma 3.1, we have indez(A, D',
K @ K) = 1. To prove that system has a strictly positive solution (u,v),
we will show that A has a nontrivial fixed point in D’. So we need to
calculate the fixed-point index for the trivial solution (u,v) and semi-
trivial solutions (up,0) and (0,vy). We also require that the point be an
isolated fixed point to use the fixed-point index for an operator at a point.
Since we consider the operator A on the set D’ :f these fixed points are
not isolated, then there must be a nontrivial fixed point in the interior
of D'. So system has a positive solution. Therefcre we may assume that
(0,0), (u0,0) and (0, vo) are isolated fixed point of A. By Lemma 3.2 and
Lemma 3.3, we have

indezw (A, (0,0)) =0
indexW(A, (U(], 0) =1
indexw (A, (0,v0)) =1

By using the excision and solution properties for the index theory, we
conclude that A has a nontrivial fixed point in D'. Therefore the system
(1.1) has a strictly positive solution. O

REMARK. One can prove the result that the system (1.1) has a positive
solution if the sign of the first eigenvalues of operators (0, vo) A+ £(0, o)
and ¥(uo, 0)A +g(ug, 0) are both positive by fixed-point index theory used
in this paper. It will give the alternative proof for the existence theorem
in [2].
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