• Title/Summary/Keyword: Commutative algebra

Search Result 137, Processing Time 0.017 seconds

NONCOMMUTATIVE CONTINUOUS FUNCTIONS

  • Don, Hadwin;Llolsten, Kaonga;Ben, Mathes
    • Journal of the Korean Mathematical Society
    • /
    • v.40 no.5
    • /
    • pp.789-830
    • /
    • 2003
  • By forming completions of families of noncommutative polynomials, we define a notion of noncommutative continuous function and locally bounded Borel function that give a noncommutative analogue of the functional calculus for elements of commutative $C^{*}$-algebras and von Neumann algebras. These notions give a precise meaning to $C^{*}$-algebras defined by generator and relations and we show how they relate to many parts of operator and operator algebra theory.

ON GENERALIZED JORDAN DERIVATIONS OF GENERALIZED MATRIX ALGEBRAS

  • Ashraf, Mohammad;Jabeen, Aisha
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.733-744
    • /
    • 2020
  • Let 𝕽 be a commutative ring with unity, A and B be 𝕽-algebras, M be a (A, B)-bimodule and N be a (B, A)-bimodule. The 𝕽-algebra 𝕾 = 𝕾(A, M, N, B) is a generalized matrix algebra defined by the Morita context (A, B, M, N, 𝝃MN, ΩNM). In this article, we study generalized derivation and generalized Jordan derivation on generalized matrix algebras and prove that every generalized Jordan derivation can be written as the sum of a generalized derivation and antiderivation with some limitations. Also, we show that every generalized Jordan derivation is a generalized derivation on trivial generalized matrix algebra over a field.

CONTINUITY OF BANACH ALGEBRA VALUED FUNCTIONS

  • Rakbud, Jittisak
    • Communications of the Korean Mathematical Society
    • /
    • v.29 no.4
    • /
    • pp.527-538
    • /
    • 2014
  • Let K be a compact Hausdorff space, $\mathfrak{A}$ a commutative complex Banach algebra with identity and $\mathfrak{C}(\mathfrak{A})$ the set of characters of $\mathfrak{A}$. In this note, we study the class of functions $f:K{\rightarrow}\mathfrak{A}$ such that ${\Omega}_{\mathfrak{A}}{\circ}f$ is continuous, where ${\Omega}_{\mathfrak{A}}$ denotes the Gelfand representation of $\mathfrak{A}$. The inclusion relations between this class, the class of continuous functions, the class of bounded functions and the class of weakly continuous functions relative to the weak topology ${\sigma}(\mathfrak{A},\mathfrak{C}(\mathfrak{A}))$, are discussed. We also provide some results on its completeness under the norm defined by ${\mid}{\parallel}f{\parallel}{\mid}={\parallel}{\Omega}_{\mathfrak{A}}{\circ}f{\parallel}_{\infty}$.

INDUCED HOPF CORING STRUCTURES

  • Saramago, Rui Miguel
    • Journal of the Korean Mathematical Society
    • /
    • v.48 no.3
    • /
    • pp.627-639
    • /
    • 2011
  • Hopf corings are dened in this work as coring objects in the category of algebras over a commutative ring R. Using the Dieudonn$\'{e}$ equivalences from [7] and [19], one can associate coring structures built from the Hopf algebra $F_p[x_0,x_1,{\ldots}]$, p a prime, with Hopf ring structures with same underlying connected Hopf algebra. We have that $F_p[x_0,x_1,{\ldots}]$ coring structures classify thus Hopf ring structures for a given Hopf algebra. These methods are applied to dene new ring products in the Hopf algebras underlying known Hopf rings that come from connective Morava ${\kappa}$-theory.

ON MULTIPLIER WEIGHTED-SPACE OF SEQUENCES

  • Bouchikhi, Lahcen;El Kinani, Abdellah
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1159-1170
    • /
    • 2020
  • We consider the weighted spaces ℓp(𝕊, 𝜑) and ℓp(𝕊, 𝜓) for 1 < p < +∞, where 𝜑 and 𝜓 are weights on 𝕊 (= ℕ or ℤ). We obtain a sufficient condition for ℓp(𝕊, 𝜓) to be multiplier weighted-space of ℓp(𝕊, 𝜑) and ℓp(𝕊, 𝜓). Our condition characterizes the last multiplier weighted-space in the case where 𝕊 = ℤ. As a consequence, in the particular case where 𝜓 = 𝜑, the weighted space ℓp(ℤ,𝜓) is a convolutive algebra.

TWISTED HOPF COMODULE ALGEBRAS (2)

  • Park, Jun Seok
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.14 no.1
    • /
    • pp.85-103
    • /
    • 2001
  • Suppose that Hand K are paired Hopf algebras and that A is an H - K - bicomodule algebra with multiplication which is a left H-comodule map and is a right K-comodule map. We define a new twisted algebra, $A^{\tau}$ and define $M^{\tau}$ for $M{\in}M_A^K$. We find an equivalent condition for $M^{\tau}{\in}M_{A^{\tau}}^K$. We show that the above defined twisted multiplication is the special case of Beattie's twist multiplication. We show that if K is commutative, then A is an H-module algebra and show that if $H^*$ is cocommutative then the construction of smash product appears as a special case of the new twist product.

  • PDF

OPPOSITE SKEW COPAIRED HOPF ALGEBRAS

  • Park, Junseok;Kim, Wansoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.17 no.1
    • /
    • pp.85-101
    • /
    • 2004
  • Let A be a Hopf algebra with a linear form ${\sigma}:k{\rightarrow}A{\otimes}A$, which is convolution invertible, such that ${\sigma}_{21}({\Delta}{\otimes}id){\tau}({\sigma}(1))={\sigma}_{32}(id{\otimes}{\Delta}){\tau}({\sigma}(1))$. We define Hopf algebras, ($A_{\sigma}$, m, u, ${\Delta}_{\sigma}$, ${\varepsilon}$, $S_{\sigma}$). If B and C are opposite skew copaired Hopf algebras and $A=B{\otimes}_kC$ then we find Hopf algebras, ($A_{[{\sigma}]}$, $m_B{\otimes}m_C$, $u_B{\otimes}u_C$, ${\Delta}_{[{\sigma}]}$, ${\varepsilon}B{\otimes}{\varepsilon}_C$, $S_{[{\sigma}]}$). Let H be a finite dimensional commutative Hopf algebra with dual basis $\{h_i\}$ and $\{h_i^*\}$, and let $A=H^{op}{\otimes}H^*$. We show that if we define ${\sigma}:k{\rightarrow}H^{op}{\otimes}H^*$ by ${\sigma}(1)={\sum}h_i{\otimes}h_i^*$ then ($A_{[{\sigma}]}$, $m_A$, $u_A$, ${\Delta}_{[{\sigma}]}$, ${\varepsilon}_A$, $S_{[{\sigma}]}$) is the dual space of Drinfeld double, $D(H)^*$, as Hopf algebra.

  • PDF

ON S-MULTIPLICATION RINGS

  • Mohamed Chhiti;Soibri Moindze
    • Journal of the Korean Mathematical Society
    • /
    • v.60 no.2
    • /
    • pp.327-339
    • /
    • 2023
  • Let R be a commutative ring with identity and S be a multiplicatively closed subset of R. In this article we introduce a new class of ring, called S-multiplication rings which are S-versions of multiplication rings. An R-module M is said to be S-multiplication if for each submodule N of M, sN ⊆ JM ⊆ N for some s ∈ S and ideal J of R (see for instance [4, Definition 1]). An ideal I of R is called S-multiplication if I is an S-multiplication R-module. A commutative ring R is called an S-multiplication ring if each ideal of R is S-multiplication. We characterize some special rings such as multiplication rings, almost multiplication rings, arithmetical ring, and S-P IR. Moreover, we generalize some properties of multiplication rings to S-multiplication rings and we study the transfer of this notion to various context of commutative ring extensions such as trivial ring extensions and amalgamated algebras along an ideal.

MODULE DERIVATIONS ON COMMUTATIVE BANACH MODULES

  • Amini, Massoud;Bodaghi, Abasalt;Shojaee, Behrouz
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.891-906
    • /
    • 2020
  • In this paper, the commutative module amenable Banach algebras are characterized. The hereditary and permanence properties of module amenability and the relations between module amenability of a Banach algebra and its ideals are explored. Analogous to the classical case of amenability, it is shown that the projective tensor product and direct sum of module amenable Banach algebras are again module amenable. By an application of Ryll-Nardzewski fixed point theorem, it is shown that for an inverse semigroup S, every module derivation of 𝑙1(S) into a reflexive module is inner.