DOI QR코드

DOI QR Code

INDUCED HOPF CORING STRUCTURES

  • Received : 2010.02.12
  • Accepted : 2010.05.05
  • Published : 2011.05.01

Abstract

Hopf corings are dened in this work as coring objects in the category of algebras over a commutative ring R. Using the Dieudonn$\'{e}$ equivalences from [7] and [19], one can associate coring structures built from the Hopf algebra $F_p[x_0,x_1,{\ldots}]$, p a prime, with Hopf ring structures with same underlying connected Hopf algebra. We have that $F_p[x_0,x_1,{\ldots}]$ coring structures classify thus Hopf ring structures for a given Hopf algebra. These methods are applied to dene new ring products in the Hopf algebras underlying known Hopf rings that come from connective Morava ${\kappa}$-theory.

Keywords

References

  1. J. M. Boardman, R. L. Kramer, and W. S. Wilson, The periodic Hopf ring of connective Morava K-theory, Forum Math. 11 (1999), no. 6, 761-767. https://doi.org/10.1515/form.1999.024
  2. A. K. Bousfield, On ${\lambda}$-rings and the K-theory of infinite loop spaces, K-Theory 10 (1996), no. 1, 1-30. https://doi.org/10.1007/BF00534886
  3. A. K. Bousfield, On p-adic ${\lambda}$-rings and the K-theory of H-spaces, Math. Z. 223 (1996), no. 3, 483-519. https://doi.org/10.1007/PL00004271
  4. V. Buchstaber and A. Lazarev, Dieudonne modules and p-divisible groups associated with Morava K-theory of Eilenberg-Mac Lane spaces, Algebr. Geom. Topol. 7 (2007), 529-564. https://doi.org/10.2140/agt.2007.7.529
  5. M. Demazure, Lectures on p-Divisible Groups, Lecture Notes in Mathematics, Vol. 302. Springer-Verlag, Berlin-New York, 1972.
  6. M. Demazure and P. Gabriel, Groupes Algebriques, North-Holland, Amsterdam, 1970.
  7. P. G. Goerss, Hopf rings, Dieudonne modules, and $E_*{\Omega}^2S^3$, Homotopy invariant algebraic structures (Baltimore, MD, 1998), 115-174, Contemp. Math., 239, Amer. Math. Soc., Providence, RI, 1999.
  8. P. Goerss, J. Lannes, and F. Morel, Hopf algebras, Witt vectors, and Brown-Gitler spectra, Algebraic topology (Oaxtepec, 1991), 111-128, Contemp. Math., 146, Amer. Math. Soc., Providence, RI, 1993.
  9. M. J. Hopkins, D. C. Ravenel, and W. S. Wilson, Morava Hopf algebras and spaces K(n) equivalent to fiite Postnikov systems, Stable and unstable homotopy (Toronto, ON, 1996), 137-163, Fields Inst. Commun., 19, Amer. Math. Soc., Providence, RI, 1998.
  10. J. R. Hunton and P. R. Turner, Coalgebraic algebra, J. Pure Appl. Algebra 129 (1998), no. 3, 297-313. https://doi.org/10.1016/S0022-4049(97)00076-5
  11. I. Kaplansky, Bialgebras, Chicago, 1975.
  12. R. L. Kramer, The periodic Hopf ring of connective Morava K-theory, Ph. D. Thesis, The Johns Hopkins University, 1990.
  13. J. W. Milnor and J. C. Moore, On the structure of Hopf algebras, Ann. of Math. (2) 81 (1965), 211-264. https://doi.org/10.2307/1970615
  14. D. C. Ravenel, Dieudon'e modules for abelian Hopf algebras, Conference on homotopy theory (Evanston, Ill., 1974), 177-183, Notas Mat. Simpos., 1, Soc. Mat. Mexicana, Mexico, 1975.
  15. D. C. Ravenel and W. S. Wilson, The Hopf ring for complex cobordism, J. Pure Appl. Algebra 9 (1976/77), no. 3, 241-280. https://doi.org/10.1016/0022-4049(77)90070-6
  16. D. C. Ravenel and W. S. Wilson, The Morava K-theories of Eilenberg-Mac Lane spaces and the Conner-Floyd conjecture, Amer. J. Math. 102 (1980), no. 4, 691-748. https://doi.org/10.2307/2374093
  17. H. Sadofsky and W. S. Wilson, Commutative Morava homology Hopf algebras, Homotopy theory via algebraic geometry and group representations (Evanston, IL, 1997), 367-373, Contemp. Math., 220, Amer. Math. Soc., Providence, RI, 1998.
  18. R. M. Saramago, Dieudonne rings associated with $K(n)_*k(n)_*$, Proc. Amer. Math. Soc. 136 (2008), no. 8, 2699-2709. https://doi.org/10.1090/S0002-9939-08-09235-6
  19. R. M. Saramago, Dieudonne module structures for ungraded and periodically graded Hopf rings, Algebras and Representation Theory 13 (2010), no. 5, 521-541. https://doi.org/10.1007/s10468-009-9135-8
  20. R. M. Saramago, Connected Hopf Corings and Their Dieudonne Counterparts, preprint.
  21. C. Schoeller, Etude de la categorie des algebres de Hopf commutatives connexes sur un corps, Manuscripta Math. 3 (1970), 133-155. https://doi.org/10.1007/BF01273307
  22. W. S. Wilson, The Hopf ring for Morava K-theory, Publ. Res. Inst. Math. Sci. 20 (1984), no. 5, 1025-1036. https://doi.org/10.2977/prims/1195180879