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MODULE DERIVATIONS ON COMMUTATIVE

BANACH MODULES

Massoud Amini, Abasalt Bodaghi, and Behrouz Shojaee

Abstract. In this paper, the commutative module amenable Banach

algebras are characterized. The hereditary and permanence properties of
module amenability and the relations between module amenability of a

Banach algebra and its ideals are explored. Analogous to the classical case
of amenability, it is shown that the projective tensor product and direct

sum of module amenable Banach algebras are again module amenable.

By an application of Ryll-Nardzewski fixed point theorem, it is shown
that for an inverse semigroup S, every module derivation of l1(S) into a

reflexive module is inner.

1. Introduction

The concept of module amenability for a class of Banach algebras which
is in fact a generalization of the classical amenability (Johnson’s amenability)
[17] has been developed by the first author in [1]. He showed that for every
inverse semigroup S with a subsemigroup E of idempotents, the l1(E)-module
amenability of l1(S) is equivalent to the amenability of S. Recall that a dis-
crete semigroup S is called an inverse semigroup if for each s ∈ S, there is a
unique element s∗ ∈ S such that ss∗s = s and s∗ss∗ = s∗. An element e ∈ S
is called an idempotent if e = e∗ = e2. The set of idempotents of S is denoted
by E. The mentioned notion was modified in [7] and [5], by using module
homomorphisms between Banach algebras. In [22], Aghababa and the second
author introduced the notions of module approximate amenability and con-
tractibility of Banach algebras that are modules over another Banach algebra.
They proved that l1(S) is l1(E)-module approximately amenable (contractible)
if and only if S is amenable; for the module character amenability, generalized
notions of module character amenability, weak module amenability and the
n-weak module amenability of inverse semigroup algebras, we refer to [8], [12],
[2] and [10], respectively. Furthermore, permanent weak module amenability of
the triangular Banach algebras (resp. the module projective tensor product of
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Banach algebras) and applications to inverse semigroup algebras are studied in
[13] (resp. [11]). Recently, Asgari et al. in [4] studied the module amenability
of the weighted semigroup algebras and showed that for an inverse semigroup
S equipped with a weight ω and the set of idempotents E, when l1(E) acts on
l1(S, ω) trivially from left and by multiplication from right, the weighted semi-
group algebra l1(S, ω) is l1(E)-module amenable if and only if S is amenable
and sup {Ω(s) : s ∈ S} <∞ where Ω(s) = ω(s)ω(s∗) for all s ∈ S.

In this paper, we characterize the module amenability of a commutative
Banach A-module A, where A and A are Banach algebras. We prove that for
every ideal of a commutative module amenable Banach algebra, its module
amenability is equivalent to having a bounded approximate identity. In addi-
tion, we investigate the module amenability of tensor product and direct sum
of Banach algebras. As an application of Ryll-Nardzewski fixed point theorem,
we prove that for an inverse semigroup S, every module derivation of l1(S) into
a reflexive module is inner.

2. Preliminaries

Let us introduce some notations that will be used throughout this paper.
Let A and A be Banach algebras such that A is a Banach A-bimodule with
compatible actions as follows:

α · (ab) = (α · a)b, (ab) · α = a(b · α) (a, b ∈ A, α ∈ A).

Let X be a Banach A-bimodule and a Banach A-bimodule with compatible
actions, that is

α · (a · x) = (α · a) · x, a · (α · x) = (a · α) · x, (α · x) · a = α · (x · a)

for all a ∈ A, α ∈ A, x ∈ X and similarly for the right or two-sided actions.
Then, we say that X is a Banach A-A-module. Moreover, if α · x = x · α
for all α ∈ A, x ∈ X, then X is called a commutative A-A-module. If X is
a commutative Banach A-A-module, then so is X∗, the first dual space of X,
where the actions of A and A on X∗ are defined as usual:

〈α · f, x〉 = 〈f, x · α〉, 〈a · f, x〉 = 〈f, x · a〉

for all a ∈ A, α ∈ A, x ∈ X, f ∈ X∗ and similarly for the right actions.
Note that in general, A is not an A-A-module because A does not satisfy the
compatibility condition a · (α · b) = (a ·α) · b for α ∈ A, a, b ∈ A. But when A is
a commutative A-module and acts on itself by multiplication from both sides,
then it is also a Banach A-A-module.

Let A and A be as in the above and X be a Banach A-A-module. A bounded
map D : A −→ X is called a module derivation if

D(a± b) = D(a)±D(b), D(ab) = D(a) · b+ a ·D(b) (a, b ∈ A),

and

D(α · a) = α ·D(a), D(a · α) = D(a) · α (a ∈ A, α ∈ A).
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One should remember that D is not necessarily linear, but its boundedness
(defined as the existence of M > 0 such that ‖D(a)‖ ≤ M‖a‖ for all a ∈ A)
still implies its continuity, as it preserves subtraction. For a commutative A-
A-module X, each x ∈ X defines a module derivation

Dx(a) = a · x− x · a (a ∈ A).

These are called inner module derivations. A Banach algebra A is called mod-
ule amenable (as an A-module) if for any commutative Banach A-A-module X,
each module derivation D : A −→ X∗ is inner. We use the notations ZA(A, X∗)
and BA(A, X∗) for the space of all module derivations and inner module deriva-
tions from A to X∗, respectively. We also use the notation HA(A, X∗) for the
quotient space ZA(A, X∗)/BA(A, X∗) which we call the first relative (to A)-
cohomology group of A with coefficients in X∗. Hence, A is module amenable
if and only if HA(A, X∗) = {0} for all commutative Banach A-A-module X [1].

Let X⊗̂Y denote the projective tensor product of two Banach spaces X and
Y and let A be a Banach algebra. Let also X be a Banach right A-module and
Y be a Banach left A-module. Put N as the closed linear span of

{x · α⊗ y − x⊗ α · y : α ∈ A, x ∈ X, y ∈ Y }.

We also consider the Banach space X⊗̂AY = (X⊗̂Y )/N (for more details refer
to [24]). If now X and Y are Banach A-modules, then X⊗̂Y is a Banach
A-module by the following usual actions:

α · (x⊗ y) = (α · x)⊗ y, (x⊗ y) · α = x⊗ (y · α) (α ∈ A, x ∈ X, y ∈ Y ).

Hence, N is clearly an A-submodule of X⊗̂Y , and so X⊗̂AY is a Banach
A-module.

Suppose that A and B are Banach algebras and Banach A-bimodules. Then,
A⊗̂B is a Banach algebra with respect to the canonical multiplication that
satisfies that

(a⊗ b)(c⊗ d) = (ac⊗ bd) (a, c ∈ A, b, d ∈ B).

Consider IA as the closed ideal of the projective tensor product A⊗̂A gen-
erated by elements of the form

{a · α⊗ b− a⊗ α · b | α ∈ A, a, b ∈ A}.

Let ωA : A⊗̂A −→ A be the product map, i.e., ωA(a ⊗ b) = ab. Let JA be
the closed ideal of A generated by

ωA(I) = {(a · α)b− a(α · b) | α ∈ A, a, b ∈ A}.
We note that JA is indeed equal to the closed subspace generated by ωA(I)
[10, Lemma 3.1]. Furthermore, the module projective tensor product A⊗̂AA ∼=
(A⊗̂A)/IA and the quotient Banach algebra A/JA are both Banach A-modules
and Banach A-modules. Moreover, A/JA is always A-A-module with compati-
ble actions when A acts on A/JA canonically. We have (A⊗̂AA)∗ = LA(A,A∗)
where the right hand side is the space of all A-module morphism from A to
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A∗ [24]. Consider the map ω̃A : A⊗̂AA ∼= (A⊗̂A)/IA −→ A/JA defined via
ω̃A(a⊗ b+ IA) = ab+ JA and extended by linearity and continuity. It is clear
that ω̃A, ω̃

∗
A and second adjoint ω̃∗∗A : (A⊗̂AA)∗∗ −→ A∗∗/J⊥⊥A are A-module

and A-module homomorphisms. We shall denote IA, JA and ω̃A by I, J and
ω̃ respectively, if there is no risk of confusion. Obviously, I and J are A-
submodules and A-submodules of A⊗̂A and A respectively, and the quotients
A⊗̂AA and A/J are A-modules and A-modules.

Let A be a Banach algebra and X be a Banach A-bimodule. We say X is
A-pseudo-unital if X = A ·X · A = {a · x · b : a, b ∈ A, x ∈ X}. Recall that A
has a bounded approximate identity for A if there is a bounded net {γi} in A
such that for each a ∈ A, ‖γi · a− a‖ → 0 and ‖a · γi − a‖ → 0 as i→∞.

It is proved in [1, Proposition 2.1] that if A has a bounded approximate
identity for A, then amenability of A implies its module amenability. Indeed,
the above result shows that every A-module derivation is also a linear derivation
when A has a bounded approximate identity for A. This condition is strong
and this is reduced to a weaker condition, as left or right essential A-module
[22]. Recall that a left Banach A-module X is called a right essential A-module
if the linear span of X ·A = {x ·a : a ∈ A, x ∈ X} is dense in X. Left essential
A-modules and (two-sided) essential A-bimodules are defined similarly. We
will use this fact several times in the current work.

Example 2.1. (i) Let G be a locally compact group. Suppose 1 ≤ p ≤ ∞ and
f ∈ L1(G) and g ∈ Lp(G). Then, f ∗g ∈ Lp(G) and ‖f ∗g‖p ≤ ‖f‖1‖g‖p. In the
case that G is a compact group, g ∗ f ∈ Lp(G), L1(G) and ‖g ∗ f‖ ≤ ‖f‖1‖g‖p.
Now, if G is an abelian compact group, A = l1(G), the Banach algebra of
discrete measures, A = Lp(G) and X = L1(G), then L1(G) is an Lp(G)-l1(G)-
module which is commutative as an l1(G)-module. For a concrete example, we
illustrate this for G = T, the compact abelian group of unit complex numbers.
Let 1 < p < ∞ and 1

p + 1
q = 1. Consider f = Σ∞n=−∞

1
ne

2πint ∈ Lp(T) (which

is basically the Fourier transform of the above function f used in the discrete
case). Then, for each g ∈ Lq(T), g ∗ f = Σ∞n=−∞

1
n ĝ(n)e2πint ∈ L1(T) where

ĝ ∈ c0(G) is the Fourier transform of g.
(ii) For a locally compact group G, L1(G) is a closed two sided ideal in

M(G), the measure algebra of G and hence, we can consider it as a Banach
M(G)-module with convolution. Therefore, by the convolution action, M(G) is
an L1(G)-l1(G)-module which is commutative as an l1(G)-module if and only
if G is abelian [20].

Definition 2.2. A bounded net {ũj} in A⊗̂AA is called a module approximate
diagonal if ω̃A(ũj) is a bounded approximate identity of A/J and limj ‖ũj ·a−
a · ũj‖ = 0 for each a ∈ A. An element M̃ ∈ (A⊗̂AA)∗∗ is called a module
virtual diagonal if

ω̃∗∗A (M̃) · a = ã, M̃ · a = a · M̃ (a ∈ A),

where ã = a+ J⊥⊥.
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3. Main results

In this section, we characterize the module amenable commutative Banach
modules. We also study hereditary and permanence properties of module
amenability for these modules.

Recall that a Banach algebra A is called module biflat (as an A-module) if
ω̃∗A has a bounded left inverse which is an A/J-A-module homomorphism [9].

Theorem 3.1. Let A be a commutative Banach A-bimodule. Then, the fol-
lowing statements are equivalent:

(i) A is module amenable;
(ii) A has a module virtual diagonal;
(iii) A has a module approximate diagonal;
(iv) A is module biflat and has a bounded approximate identity;
(v) A has a bounded approximate identity and ker ω̃A has a bounded right

approximate identity;
(vi) A has a bounded approximate identity and HA(A, X∗∗) = {0} for each

commutative Banach A-A-module X;
(vii) A has a bounded approximate identity and every bounded module deriva-

tion D : A −→ (ker ω̃A)∗∗ is inner.

Proof. SinceA is a commutative Banach A-bimodule, so isA⊗̂AA and J = {0}.
If A is module amenable, then A has a bounded approximate identity by [1,
Proposition 2.2]. Now, the equivalence of (i) and (ii) follows from [20, Theorem
2.1].

(ii)⇔(iii) Let (ũj)j be a module approximate diagonal for A, and regard

(ũj)j as a bounded net in (A⊗̂AA)∗∗. Then, (ũj)j has a weak∗-accumulation

point, and each such point is a module virtual diagonal for A. Let now M̃ be
a module virtual diagonal for A, and (ũj)j be a bounded net in A⊗̂AA with
M = w∗-limj ũj . Thus

w − lim
j

(a · ũj − ũj · a) = 0 and w − lim
j
aωA(ũj) = a (a ∈ A).

By passing to convex combinations, we obtain an approximate diagonal. Equiv-
alence of (i) and (iv) is the consequence of [9, Theorem 2.1]. Besides, [22, The-
orem 4.4] shows that (i) and (v) are equivalent.

(i)⇒(vi) The first part follows from [1, Proposition 2.2] and the vanishing
of the module cohomology group is clear.

(vi)⇒(vii) It is trivial.
(vii)⇒(iii) If {ej} is a bounded approximate identity for A, then passing to a

subnet we may assume that (ej⊗ej +I) is w∗-convergent to F in (A⊗̂AA)∗∗ =

(A⊗̂A)∗∗/I⊥⊥. For each a ∈ A and f ∈ A∗, we have

〈ω̃∗∗A (a · F − F · a), f〉 = 〈a · F − F · a, ω̃∗A(f)〉
= lim

j
〈ω̃∗A(f), aej ⊗ ej − ej ⊗ eja+ I〉
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= lim
j
〈f, ae2j − e2ja〉 = 0.

Thus, a · F − F · a ∈ ker ω̃∗∗A . Consider the map T : A −→ ker ω̃∗∗A ; a 7→
a · F − F · a. Then T is a bounded module derivation. By assumption, there
exists E ∈ ker ω̃∗∗A such that

(3.1) a · F − F · a = a · E − E · a

for all a ∈ A. We show that M̃ = F − E ∈ (A⊗̂A)∗∗/I⊥⊥ is a module virtual

diagonal. We have ω̃∗∗A (M̃) = ω̃∗∗A (F ) − ω̃∗∗A (E) = ω̃∗∗A (F ). Take a ∈ A and
f ∈ A∗. Then

〈ω̃∗∗A (F )·a, f〉 = 〈F, ω̃∗A(a·f)〉 = lim
j
〈ω̃∗A(a·f), ej⊗ej+I〉 = lim

j
〈f, e2ja〉 = 〈f, a〉.

Therefore, ω̃∗∗A (M̃) ·a = a. Once more, it follows from (3.1) that M̃ ·a = a · M̃ .
This completes the proof. �

The following result is proved in [1, Proposition 2.5] by using the definition
of module actions. Here, we prove it using module approximate diagonal. The
proof is similar to the proof of [16, Theorem 2.5] but we include it for the sake
of completeness.

Proposition 3.2. Let A and B be Banach algebras and Banach A-modules. If
A is module amenable and φ : A −→ B is a continuous module homomorphism
and algebra homomorphism with dense range, then B is module amenable.

Proof. By [20, Theorem 2.1], A has a module approximate diagonal, say ũj =∑
k a

j
k⊗b

j
k+IA, in A⊗̂AA. Define the map φ̃ : A/JA −→ B/JB via φ̃(a+JA) =

φ(a) + JB. The map φ̃ is well-defined because for each a, b ∈ A and α ∈ A we
have

φ((a · α)b− a(α · b)) = (φ(a) · α)φ(b)− φ(a)(α · φ(b)) ∈ JB.

Set ṽj =
∑
k φ
(
ajk

)
⊗ φ

(
bjk

)
+ IB. For each a ∈ A, we get

lim
j

(φ(a) + JB) · ω̃B(ṽj) = lim
j

(φ(a) + JB) ·

(∑
k

φ
(
ajk

)
φ
(
bjk

)
+ JB

)

= lim
j

(∑
k

φ
(
aajkb

j
k

)
+ JB

)

= lim
j
φ̃

(
(a+ JA) ·

(∑
k

ajkb
j
k + JA

))
= lim

j
φ̃((a+ JA) · ω̃B(ũj)) = φ̃(a+ JA) = φ(a) + JB.

The density of the range of φ and its continuity show that for any b ∈ B,
limj(b + JB) · ω̃B(ṽj) = b + JB. Define the map φ : A⊗̂AA ∼= (A⊗̂A)/IA −→
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B⊗̂AB ∼= (B⊗̂B)/IB through

φ(a⊗ b+ IA) = φ(a)⊗ φ(b) + IB, (a, b ∈ A).

Similar to φ̃, the map φ is well-defined and it is also a module homomorphism.
For each a ∈ A we obtain

lim
j

(ṽj · φ(a)− φ(a) · ṽj)

= lim
j

(∑
k

(
φ
(
ajk

)
⊗ φ

(
bjka
)
− φ

(
aajk

)
⊗ φ

(
bjk

))
+ IB

)

= φ

(
lim
j

(∑
k

(ajk ⊗ b
j
ka− aa

j
k ⊗ b

j
k) + IA

))

= φ

(
lim
j

(ũj · a− a · ũj)
)

= 0.

Thus, for b ∈ A, limj (ṽj · b− b · ṽj) = 0. Therefore, ṽj =
∑p
k=1 φ

(
ajk

)
⊗

φ
(
bjk

)
+ IB is a module approximate diagonal for B, and so B is module

amenable. �

Corollary 3.3. Let A be a Banach A-module and I be a closed ideal in A
which is an A-submodule of A. Then, the module amenability of A implies
module amenability of A/I.

Proposition 3.4. Let A be a Banach A-module and I be a closed ideal and
an A-submodule of A. If I and A/I are module amenable, then so is A.

Proof. Suppose that X is a commutative Banach A-A-module with compatible
actions and D : A −→ X∗ is a bounded module derivation. Since I is module
amenable, there exists f1 ∈ X∗ such that D |I= Df1 . Thus, the map D̃ =
D−Df1 vanishes on I. This map induces a module derivation into X∗, which

we again denote by D̃. Let Y be the closed linear span of

{a · x− y · b | a, b ∈ I, x, y ∈ X},
in X. It follows immediately that Y is a closed A-submodule and A-submodule
of X, and so X/Y is a Banach A/I-A-module with compatible actions. Since

D |I= {0}, we have a · D̃(b) = D̃(ab) − D̃(a) · b = 0 for all a ∈ I and b ∈ A.

Similarly, D̃(b) · a = 0. This implies D̃(A/I) ⊂ Y ⊥ = (X/Y )∗. Due to module

amenability of A/I, there is f2 ∈ Y ⊥ ⊂ X∗ such that D̃ = Df2 . Consequently,
D = Df1+f2 . �

The upcoming result is a direct consequence of Corollary 3.3 and Proposition
3.4.

Corollary 3.5. Let A and B be Banach A-modules. Then, A and B are module
amenable if and only if A⊕ B is module amenable.
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We denote the character space of a Banach algebra A by ΦA. We say a
Banach algebra A acts trivially from left on a Banach algebra A if there is
f ∈ ΦA such that

α · a = f(α)a

for each α ∈ A and a ∈ A. Right trivial action is defined similarly.
Let A be a Banach algebra and let f ∈ ΦA be fixed. Suppose that A act on

C trivially from both sides. That is

(3.2) α · λ = λ · α = f(α)λ, (α ∈ A, λ ∈ C).

With the above actions, C is a two-sided essential commutative A-bimodule.
Here, we mean that C is a Banach A-bimodule for which the module actions
are given by (3.2). It is well known that C is amenable. It is shown in [22]
that if A is a left (right) essential A-module, then every A-module derivation
is also a derivation. Since C is a two-sided essential A-bimodule, it is module
amenable and so we have the following result by Corollary 3.5.

Proposition 3.6. Let n ∈ N. Then, Cn is module amenable (as an A-module).

Assume that A is a unital and module amenable Banach algebra. We wish to
show that A has a module approximate diagonal (ũj) such that ω̃(ũj) = e+ J
for all ũj , where e is an identity for A. Put T = e ⊗ e + I. Define the map

D : A −→ (A⊗̂AA)∗∗ by D(a) := a ·T −T ·a (a ∈ A). Clearly, D is a module
derivation and D(a) ⊆ ker ω̃∗∗ ⊆ (ker ω̃)∗∗. By assumption there exists a
N ∈(ker ω̃)∗∗ so that D(a) = a · N − N · a. Letting M = T − N , we obtain
a · ω̃∗∗(M) = a+ J⊥⊥ and

a ·M −M · a = DM (a) = DT−N (a) = DT (a)−DN (a) = 0

for all a ∈ A, and so M is a module virtual diagonal for A. On the other hand,
there exists a bounded net (uj) ⊆ker ω̃ such that N = w∗-limj(uj). Putting
ũj = T − uj , we have a · ũj − ũj · a → 0 and (a + J) · ω̃(ũj) → (a + J). In
particular, ω̃(ũj) = e+ J .

Let A be a Banach algebra which is Banach A-module. A Banach A-A-
module X is called module pseudo-unital if

X = {a · x · b : a, b ∈ A, x ∈ X}.

Let A and B be Banach algebras such that A is contained as a closed ideal
in B. Then, the strict topology on B with respect to A is defined by the family
of seminorms (Ta)a∈A, where

Ta(b) := ‖ba‖+ ‖ab‖ (b ∈ B).

To prove the next theorem, we need the following lemma which is analogous
to [25, Proposition 2.1.6]. Since the proof is similar, we only include some parts
of the proof related to the module actions.
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Lemma 3.7. Let A and B be commutative Banach algebras which are A-
modules such that A has a bounded approximate identity which is contained
as closed ideal in B. If X is a pseudo-unital Banach A-A-module and D ∈
ZA(A, X∗), then X is a Banach B-A-module in a canonical way, and there is

a unique D̃ ∈ ZA(B, X∗) such that D̃|A = D and D̃ is continuous with respect
to the strict topology on B and the w∗-topology on X∗.

Proof. For x ∈ X, let a ∈ A and y ∈ X be such that x = a ·y. For b ∈ B, define
b · x := ba · y. It is shown in [25, Proposition 2.1.6] that b · x is well defined,
i.e., independent of the choices for a and y, and so X becomes a Banach B-
bimodule. Once more, let x ∈ X, a ∈ A and y ∈ X be such that x = y · a. For
each b ∈ B, we have

α · (b · x) = α · (b · (a · y)) = α · (ba · y) = (α · ba) · y = (α · b)a · y = (α · b) · x.
Similarly, we can show that b · (α ·x) = (b ·α) ·x and (α ·x) · b = α · (x · b) for all
b ∈ A, α ∈ A, x ∈ X. Thus, X is B-A-module satisfying the compatible actions.

Define the map D̃ : B −→ X∗ by D̃(b) = w∗ − limj(D(bej)− b ·D(ej)), where
(ej) is a bounded approximate identity for A. It is proved in [25, Proposition

2.1.6] that D̃ is well-defined which is also continuous with respect to the strict

topology on B and the w∗-topology onX. In addition, D̃(ab) = a·D̃(b)+D̃(a)·b.
It remains to be shown that D̃ is an A-module homomorphism. For each b ∈ B
and α ∈ A, we find

〈D̃(α · b), x〉 = lim
j
〈D(α · bej)− α · b ·D(ej), x〉

= lim
j
〈D(bej)− b ·D(ej), x · α〉

= lim
j
〈α · (D(bej)− b ·D(ej)), x〉 = 〈α · D̃(b), x〉.

The above relations show that D̃ is a left A-module homomorphism. Similarly,

D̃ is a right A-module homomorphism. �

Theorem 3.8. Let A be a commutative module amenable Banach algebra (as
an A-bimodule), I be a closed ideal of A and an A-submodule of A. Then, I
is module amenable if and only if it has a bounded approximate identity.

Proof. If I is module amenable, then it has a bounded approximate identity
by [1, Proposition 2.2].

Conversely, assume that X is a Banach I-A-module with compatible actions.
Since I has a bounded approximate identity, by [1, Lemma 2.1] we may suppose
that X is an I-pseudo-unital Banach I-A-module. If D ∈ ZA(I, X∗), the proof
of Lemma 3.7 shows that the module actions of I on X extend to A and D has
an extension D̃ ∈ ZA(A, X∗). Due to module amenability of A, D̃ is an inner

derivation, and thus D = D̃|I is an inner derivation. �

Lemma 3.9. Let A and B be Banach A-modules. If B is a right essential
A-module, then so is A⊗̂B.
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Proof. Suppose that f = Σiai ⊗ bi ∈ A⊗̂B, where ai ∈ A and bi ∈ B for
all i. Since B is an essential right A-module, we may assume that bi =

limj

(
Σjb

j
i · αj

)
in which bji ∈ B and αj ∈ A. We have

f = Σiai ⊗
(

lim
j

(
Σjb

j
i · α

j
))

= lim
j

(
Σiai ⊗

(
Σjb

j
i · α

j
))

= lim
j

(
ΣjΣiai ⊗ bji · α

j
)
.

The above equalities show that f belongs to the closed linear span (A⊗̂B) ·A,
i.e., A⊗̂B is a right essential A-module. �

Remark 3.10. If A and B are amenable such that B is an essential right A-
module, then by Lemma 3.9, A⊗̂B is an essential right A-module. Hence,
every A-module derivation on A⊗̂B is also a derivation. Therefore, A⊗̂B is
module amenable.

Let A be a non-unital Banach algebra. Then, the unitization of A which is
A# = A ⊕ C is a unital Banach algebra which contains A as a closed ideal.
Suppose that A is a Banach algebra and a Banach A-bimodule with compat-
ible actions. Thus, A is a Banach algebra and a Banach A#-bimodule with
compatible actions in the obvious way, i.e., the action of A# on A is as follows:

(α, λ) · a = α · a+ λa, a · (α, λ) = a · α+ λa (λ ∈ C, α ∈ A, a ∈ A).

Let A be a Banach algebra and a Banach A-bimodule with compatible actions
and let A] = (A⊕ A#, •), where the multiplication • is defined through

(a, u) • (b, v) = (ab+ av + ub, uv) (a, b ∈ A, u, v ∈ A#).

Then, with the actions defined by

u · (a, v) = (u · a, uv), (a, v) · u = (a · u, vu) (a ∈ A, u, v ∈ A#),

we see that A] is a unital Banach algebra with identity 1A and a Banach
A#-bimodule with compatible actions.

The next theorem is proved in [22, Theorem 3.1] and will be used in the
proof of Theorem 3.12.

Theorem 3.11. Let A be a Banach algebra and a Banach A-bimodule with
compatible actions. Then, the following are equivalent:

(i) A is A#-module amenable;
(ii) A] is A#-module amenable.

If, in addition, A is a left or right essential A-module, then (i) and (ii) are
equivalent to

(iii) A is A-module amenable.

Theorem 3.12. Let A and B be commutative Banach A-modules and B be
a right essential A-module. If A and B are module amenable, then A⊗̂B is
module amenable.
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Proof. Since A and B are commutative A-modules module amenable, they
have bounded approximate identities by [1, Proposition 2.2], and so by [14,
Proposition 2.9.21], A⊗̂B has a bounded approximate identity. Theorem 3.11
implies that A] and B] are amenable commutative A#-modules. Since A⊗̂B
is a closed ideal in A]⊗̂B], by Theorem 3.8, we may suppose that the Banach
algebras A and B are unital and Banach A#-modules. Assume that X is a
commutative A⊗̂B-A-module with compatible actions and D : A⊗̂B −→ X∗

is module derivation. Hence, the restriction of D to 1A⊗̂B is also a module
derivation. Thus, there exists x∗ ∈ X∗ such that D|(1A⊗̂B) = Dx∗ . Replacing

D by D −Dx∗ , we may suppose that D|(1A⊗̂B) = 0. Let now Y be the closed

linear span

{x · (1A ⊗ b)− (1A ⊗ b) · x : b ∈ B, x ∈ X}
in X. Then, Y is a A-submodule of X, since for each b ∈ B and α ∈ A,

α · (x · (1A ⊗ b)− (1A ⊗ b) · x) = (α · x) · (1A ⊗ b)− (1A ⊗ b) · (α · x) ∈ Y.

Besides, for each a ∈ A, b ∈ B, and x ∈ X,

(a⊗ 1B) · (x · (1A ⊗ b)− (1A ⊗ b) · x) = ((a⊗ 1B) · x) · (1A ⊗ b)− (a⊗ b) · x
= ((a⊗ 1B) · x) · (1A ⊗ b)
− (1A ⊗ b) · ((a⊗ 1B) · x) ∈ Y.

The above equalities show that Y is a left (A⊗̂1B)-module. Similarly it is also
a right (A⊗̂1B)-module. Since a⊗ b = (a⊗ 1B)(1A ⊗ b), we have

D(a⊗ b) = D(a⊗ 1B) · (1A ⊗ b) = (1A ⊗ b) ·D(a⊗ b).

Hence, 〈D(a⊗1B), x · (1A⊗ b)− (1A⊗ b) ·x〉 = 0, and thus X/Y is a commuta-
tive Banach (A⊗̂1B)-A-module and D|(A⊗̂1B) : A⊗̂1B −→ (X/Y )∗ = Y ⊥ is a

module derivation. Due to the module amenability of A, there exists y∗ ∈ Y ⊥
such that D|(A⊗̂1B) = Dy∗ . Replacing D by D − Dy∗ , we may assume that

restriction of D to A⊗̂1B is zero. Now, the original derivation is inner. Since
B is a right essential A-module, the result follows from Theorem 3.11. �

Next, we have the next corollary which is a direct consequence of Corollary
3.3 and Theorem 3.12.

Corollary 3.13. Let A be a commutative amenable Banach right essential
A-module. Then, the projective tensor product A⊗̂AA is module amenable.

Let S be a (discrete) inverse semigroup with the set of idempotents E. We
consider the natural partial order on E as e ≤ d⇔ ed = e for all e, d ∈ E. The
subsemigroup E of S is a semilattice [15, Theorem V.1.2], and so l1(E) could
be regarded as a commutative subalgebra of l1(S). Thus, l1(S) is a Banach
algebra and a Banach l1(E)-module with compatible actions [1]. In [6], the
second author showed that if S is an amenable inverse semigroup with the set
of idempotents E, then the projective module tensor product l1(S)⊗̂l1(E)l

1(S)
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is module amenable and so the commutativity condition for l1(S) in Corollary
3.13 is redundant.

LetX be a normed space andA ⊆ X. The convex hull ofA denoted by co(A),
is the intersection of all convex sets that contain A. If X is a topological vector
space, then the closed convex hull of A is the intersection of all closed convex
subsets of X that contain A and is denoted by co(A). Now, assume that X is
a locally convex space and K is a compact convex subset of X. A continuous
map T : K −→ K is called affine if T (λk1 +(1−λ)k2) = λT (k1)+(1−λ)T (k2)
for all k1, k2 ∈ K and λ ∈ [0, 1].

Theorem 3.14 (Ryll-Nardzewski Theorem). Let X be a locally convex space
and K be a convex, weakly compact subset of X. Let Σ be a semigroup of weak
continuous, affine maps from K to K such that Σ is distal in the sense that
whenever ξ, η ∈ K with ξ 6= η, then 0 /∈ {(Tξ − Tη) : T ∈ Σ}−. Then, there
exists ξ0 ∈ K such that Tξ0 = ξ0 for all T ∈ Σ.

Remark 3.15 ([19]). The last condition in Ryll-Nardzewski fixed point theorem
requires that the semigroup Σ is distal (or so called, contracting). This is
known to be equivalent to the condition that for each ξ, η ∈ K with ξ 6= η,
there is a seminorm ρ on X (depending on ξ and η with

inf{ρ(Tξ − Tη) : T ∈ Σ} > 0.

We consider the following actions of l1(E) on l1(S) as

δe · δs = δs, δs · δe = δse = δs ∗ δe (s ∈ S, e ∈ E).

Let φ be the augmentation character on l1(E), that is, φ(δe) = 1 for each
e ∈ E. It is shown in [22] that the action l1(E) over l1(S) from left is trivial.
In the upcoming theorem, we assume that l1(E) acts trivially from the left on
l1(S) (the above action) and act on the Banach space X trivially from both
sides, that is δe · x = x · δe = x and extended by continuity and linearity for
all e ∈ E and x ∈ X. Moreover, we assume that l1(S) is acting on X with
arbitrary actions.

Theorem 3.16. Let S be an inverse semigroup with the set of idempotents E.
Then every l1(E)-module derivation from l1(S) into an l1(S)-l1(E)-module X
whose underling Banach space is reflexive, is inner.

Proof. Suppose that D : l1(S) −→ X is a l1(E)-module derivation. Set K =
co{δs∗ ·D(δs) : s ∈ S}w∗ = co{δs∗ ·D(δs) : s ∈ S}w. It is easy to check that K
is a weak-compact convex set. For each s ∈ S, define the map Ts : K −→ K
via

Ts(φ) = δs∗ ·D(δs) + δs∗ · φ · δs, (φ ∈ K).

Consider the set Σ = {Ts : s ∈ S} having as binary operation the composition
of functions. For each s, t ∈ S, and φ ∈ K, we have

Tst(φ) = δt∗s∗ ·D(δst) + δt∗s∗ · φ · δst
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= δt∗s∗ ·D(δs ∗ δt) + δt∗s∗ · φ · δst
= (δt∗ ∗ δs∗) · [δs ·D(δt) +D(δs) · δt] + δt∗s∗ · φ · δst
= δt∗ · (δs∗s ·D(δt)) + δt∗ · [δs∗ ·D(δs)) + δs∗ · φ · δs] · δt.
= δt∗ ·D(δt) + δt∗ · (Ts(φ)) · δt = Tt(Ts(φ)) = (Tt ◦ Ts)(φ).

The above equalities show that Σ is a semigroup and indeed Ts(K) ⊆ K for
any s ∈ S. Now, suppose that λ ∈ [0, 1]. Then, for each s ∈ S and φ1, φ2 ∈ Σ,
we get

Ts(λφ1 + (1− λ)φ2)

= δs∗ ·D(δs) + δs∗ · (λφ1 + (1− λ)φ2) · δs
= λ(δs∗ ·D(δs) + δs∗ · φ · δs) + (1− λ)(δs∗ ·D(δs) + δs∗ · φ · δs)
= λTs(φ1) + (1− λ)Ts(φ2).

Thus, all of elements Σ are affine maps. Take a net (φj) ⊆ K such that φj → φ,
in the weak topology. For x∗ ∈ X∗ and s ∈ S,

〈s · x∗, φ〉 = 〈x∗, φ · δs〉 (φ ∈ X)

defines a continuous linear functional s · x∗ ∈ X∗. Similarly one could define
x∗ · s ∈ X∗. We have

〈x∗, δs∗ · φj · δs − δs∗ · φ · δs〉 = 〈x∗, δs∗ · (φj − φ) · δs〉 = 〈s · x∗ · s∗, φj − φ〉 → 0

for each x∗ ∈ X∗, and thus Ts(φj) −→ Ts(φ), in the weak topology, for all
s ∈ S. Hence, each element of Σ is weakly-continuous. Note that in any
normed space, the norm closure and the weak closure of a convex set are the
same. Furthermore, if φ1, φ2 ∈ K such that φ1 6= φ2, we find

‖Ts(φ1)− Ts(φ2)‖ = ‖δs∗ · (φ1 − φ2) · δs‖
≥ ‖δs ·

(
δs∗ · (φ1 − φ2) · δs

)
· δs∗‖

= ‖δss∗ · (φ1 − φ2) · δss∗‖
= ‖φ1 − φ2‖

for all s ∈ S. Hence, the semigroup Σ is distal by Remark 3.15. By Theorem
3.14, there exists φ ∈ K such that δs∗ · D(δs) + δs∗ · φ · δs = φ for all s ∈ S.
Thus, δss∗ ·D(δs) + δss∗ · φ · δs = δs · φ. Therefore, D(δs) = φ · δs − δs · φ. �

For an inverse semigroup S, the ideal Jl1(S) (or simply J) is the closed linear
span of {δset − δst : s, t ∈ S, e ∈ E}. We consider an equivalence relation on S
as follows:

s ≈ t⇐⇒ δs − δt ∈ J (s, t ∈ S).

In this case the quotient S/≈ is a discrete group (see [3] and [20]). In fact,
S/≈ is homomorphic to the maximal group homomorphic image GS [18] of
S [21]. In particular, S is amenable if and only if S/≈ = GS is amenable
[18]. As in [23, Theorem 3.3], we may observe that l1(S)/J ∼= l1(GS). With
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the notations of the previous section, l1(GS) is a commutative l1(E)-bimodule
with the following actions

δe · δ[s] = δ[s], δ[s] · δe = δ[se] (s ∈ S, e ∈ E),

where [s] denotes the equivalence class of s in GS . It is shown in [1, Lemma
3.3] that the above both actions of l1(E) on l1(GS) are trivial. We recall that
for a locally compact group G, the group algebra L1(G) is reflexive if and only
if G is finite. As an application of Theorem 3.16, we bring the next example
to show that trivial actions on X can be induced by non-trivial actions from
l1(E) on l1(GS).

Example 3.17. Let G be a group with identity e, and let Γ be a non-empty
set. Then the Brandt inverse semigroup corresponding to G and Γ, denoted
by S =M(G,Γ), is the collection of all Γ× Γ matrices (g)ij with g ∈ G in the
(i, j)th place and 0 (zero) elsewhere and the Γ×Γ zero matrix 0. Multiplication
in S is given by the formula

(g)ij(h)kl =

{
(gh)il if j = k

0 if j 6= k
(g, h ∈ G, i, j, k, l ∈ Γ),

and (g)∗ij = (g−1)ji and 0∗ = 0. The set of all idempotents is ES = {(e)ii : i ∈
Γ}
⋃
{0}. It is shown in [20] that GS is the trivial group. By Theorem 3.16,

every l1(E)-module derivation from l1(S) into l1(GS) is inner.

Acknowledgement. The authors express their sincere thanks to the reviewer
for the careful and detailed reading of the manuscript and very helpful sugges-
tions that improved the manuscript substantially.
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