• Title/Summary/Keyword: Close-Loop control

Search Result 76, Processing Time 0.051 seconds

A Study on Integrated Control of AFS and ESP for the improvement of vehicle handing performance (차량 주행성능 향상을 위한 AFS 와 ESP 의 협조제어에 관한 연구)

  • Park In-Hye;Park Ki-Hong
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.511-514
    • /
    • 2005
  • This paper propose an advanced control strategy to improve vehicle handling and directional stability by integrating Active Front Steering(AFS) with Electronic Stability Program(ESP) . The effect of the integrated control system on the vehicle handling characteristics and directional stability is studied through a close loop computer simulation of and eight degree of freedom nonlinear vehicle model and driver model. Simulation results confirm the effectiveness of the proposed control system and the overall improvements in vehicle handling and directional stability

  • PDF

MODELING OF A BUOYANCY-DRIVEN FLOW EXPERIMENT IN PRESSURIZED WATER REACTORS USING CFD-METHODS

  • Hohne, Thomas;Kliem, Soren
    • Nuclear Engineering and Technology
    • /
    • v.39 no.4
    • /
    • pp.327-336
    • /
    • 2007
  • The influence of density differences on the mixing of the primary loop inventory and the Emergency Core Cooling (ECC) water in the downcomer of a Pressurised Water Reactor (PWR) was analyzed at the ROssendorf COolant Mixing (ROCOM) test facility. ROCOM is a 1:5 scaled model of a German PWR, and has been designed for coolant mixing studies. It is equipped with advanced instrumentation, which delivers high-resolution information for temperature or boron concentration fields. This paper presents a ROCOM experiment in which water with higher density was injected into a cold leg of the reactor model. Wire-mesh sensors measuring the tracer concentration were installed in the cold leg and upper and lower part of the downcomer. The experiment was run with 5% of the design flow rate in one loop and 10% density difference between the ECC and loop water especially for the validation of the Computational Fluid Dynamics (CFD) software ANSYS CFX. A mesh with two million control volumes was used for the calculations. The effects of turbulence on the mean flow were modelled with a Reynolds stress turbulence model. The results of the experiment and of the numerical calculations show that mixing is dominated by buoyancy effects: At higher mass flow rates (close to nominal conditions) the injected slug propagates in the circumferential direction around the core barrel. Buoyancy effects reduce this circumferential propagation. Therefore, density effects play an important role during natural convection with ECC injection in PWRs. ANSYS CFX was able to predict the observed flow patterns and mixing phenomena quite well.

Development of Seaweed Weight Control Device Using Remote Control System (원격 제어 시스템을 이용한 마른 김 중량 조절 장치 개발)

  • Lee, Bae-Kyu;Youn, Shin-Yo;Choi, Jeong-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.4
    • /
    • pp.560-565
    • /
    • 2020
  • Korea's seaweed is using a method that is not suitable for the automated process and quality are significantly lower than the export volume of 20,000 tons or more. Therefore, in this paper, we improved the existing dry steaming weight control device and electronicized the remote control system and the existing dry steaming weight control device. This is implemented with precise and detailed device, unlike the dry seaweed weight control method using the conventional valve which depends on the user's feeling and experience. Also, because it is a remote control system, it can help to produce seaweed safely even if you don't climb on the machine. The Seaweed weight control device implemented is expected to contribute greatly to the automation process and industrial growth of the steeply growing dry laver production and export industry.

System modeling from close-loop response (폐루프 응답에 의한 공정의 수학적 모델링)

  • Choi, Jeoung-Nae;Ryu, Young-Guk;Cho, Joon-Ho;Hwang, Hyung-Soo
    • Proceedings of the KIEE Conference
    • /
    • 2000.11d
    • /
    • pp.686-688
    • /
    • 2000
  • In this paper, a new method for system identification is proposed. Unknown dynamic system is identified to the second order transfer function, which can be applied to PID controller design. First, overshoot$(o_s)$, settling time$(t_s)$, and steady state value$(y_{ss})$ are obtained from the step response of unknown dynamic system. And then, we can get the second order transfer function using equations which are extracted from those three parameters$(o_s,t_s,y_{ss})$ through mathmatical analysis. In addition, simulation is carried out to show excellent performance of proposed identification method compare with other.

  • PDF

Multiple Simultaneous Specification Control of a High Speed Positioning System Driven by a Brushless D.C. Motor (브러시레스 직류 모터로 구동되는 고속 작동기의 다중 동시 사양 제어)

  • Kang Bong-Soo;Kim Soo-Hyun;Kwak Yoon-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.8 s.227
    • /
    • pp.1093-1098
    • /
    • 2004
  • This paper presents a close-loop feedback control scheme, which can simultaneously satisfy multiple conflicting control performances, for a high speed positioning system driven by a brushless D.C. motor. With the dynamic model of the motor and proportional-plus-derivative feedback controllers selected as sample controllers, the convex combined feedback controller is formulated for implementing a direct-drive manipulator. Experimental results show that the developed multiple simultaneous specification(MSS) controller can meet desired control performances; maximum overshoot and rise time.

Output voltage PID control of three-phase Z-source inverter by detection of output voltage and input DC voltage (출력전압과 입력직류전압 검출에 의한 3상 Z-소스 인버터의 출력전압 PID 제어)

  • WU, Yan-Jun;Jung, Young-Gook;Lim, Young-Cheol
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.171-172
    • /
    • 2011
  • The paper proposes a close loop control algorithm for Z-source inverter. The algorithm is realized by PWM duty ratio control in order to improve the output voltage to it's desired level. The controller consist of the output voltage PID controller and DC input voltage P controller. Using the DQ coordinate transformation simplify the controller design. The PSIM simulation results verify the validity by means of comparing the system with or without compensation and estimating if the system has output consistency function when ZSI's load and input voltage value changing.

  • PDF

Estimation Technique of Fixed Sensor Errors for SDINS Calibration

  • Lee, Tae-Gyoo;Sung, Chang-Ky
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.4
    • /
    • pp.536-541
    • /
    • 2004
  • It is important to estimate and calibrate sensor errors in maintaining the performance level of SDINS. In this study, an estimation technique of fixed sensor errors for SDINS calibration is discussed. First, the fixed errors of gyros and accelerometers, excluding gyro biases are estimated by the navigation information of SDINS in multi-position. The SDINS with RLG includes flexure errors. In this study, the gyros flexures are out of consideration, but the proposed procedure selects certain positions and rotations in order to minimize the influence of flexures. Secondly, the influences of random walks, flexures and orientation errors are verified via numerical simulations. Thirdly, applying the previous estimated errors to SDINS, the estimation of gyro biases is conducted via the additional control signals of close-loop self-alignment. Lastly, the experiments illustrate that the extracted calibration parameters are available for the improvement of SDINS.

FUZZY ADAPTIVE CONTROL ENVIRONMENT USING LYAPUNOV FUNCTONS : FACE

  • Matia, F.;Jimenez, A.;Sanz, R.;Galan, R.
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1993.06a
    • /
    • pp.765-768
    • /
    • 1993
  • Adaptive Control is used in order to improve close loop dynamics with a fuzzy controller when process parameters are unknown or fluctuate form an initial value. The way in which the adaptive control environment may be applied is the following. First we obtain a linear fuzzy controller. Second, we apply the adaptive rules by means of actuating directly over fuzzy variables which change their value. The techniques are based on Lyapunov functions. Third, we comment about extending this method to non-piecewise linear controllers using the contrast definition for a fuzzy controller.

  • PDF

Experiments of Force Control Algorithms for Compliant Robot Motion

  • Kim, Dong-Hee;Park, Jong-Hyeon;Song, Ji-Hyuk;Hur, Jong-Sung
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1786-1790
    • /
    • 2004
  • The main objective of this paper is to analyze the performance of various force control algorithms in improving and adjusting the compliance of industrial robots in contact with their environment. Some of fundamental force control algorithms such as sensorless control, impedance control and hybrid position/force control are theoretically analyzed and simulated for various situations of an environment, and then a series of experiments using them were performed. In this paper, a control scheme to use position control in implementing the impedance control was investigated in order to nullify the effect of joint friction. The new reference trajectory is generated using contact force feedback and original desired trajectory. And an inner position control loop is designed to provide accurate position tracking for the new reference trajectory and good disturbance rejection. Experiments to insert a peg in a hole (so-called the peg-in-a-hole task) were performed with HILS (hardware-in-theloop simulation) system based on the results of the analyses and simulations on the characteristics of each control algorithm. The experiments showed that various force control methods improved the performance of robots in close contact with the environment by adjusting their compliance with respect to an arbitrary set of coordinates.

  • PDF

Experimental study of neural linearizing control scheme using a radial basis function network

  • Kim, Suk-Joon;Park, Sunwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1994.10a
    • /
    • pp.731-736
    • /
    • 1994
  • Experiment on a lab-scale pH process is carried out to evaluate the control performance of the neural linearizing control scheme(NLCS) using a radial basis function(RBF) network which was previously proposed by Kim and Park. NLCS was developed to overcome the difficulties of the conventional neural controllers which occur when they are applied to chemical processes. Since NLCS is applicable for the processes which are already controlled by a linear controller and of which the past operating data are enough, we first control the pH process with PI controller. Using the operating data with PI controller, the linear reference model is determined by optimization. Then, a IMC controller replaces the PI controller as a feedback controller. NLCS consists of the IMC controller and a RBF network. After the learning of the neural network is fully achieved, the dynamics of the process combined with the neural network becomes linear and close to that of the linear reference model and the control performance of the linear control improves. During the training, NLCS maintains the stability and the control performance of the closed loop system. Experimental results show that the NLCS performs better than PI controller and IMC for both the servo and the regulator problems.

  • PDF