• Title/Summary/Keyword: Clock Transmission

Search Result 133, Processing Time 0.028 seconds

Flicker-Free Visible Light Communication System Using Byte-Inverted Transmission (바이트반전 전송방식을 이용한 플리커 방지 가시광통신시스템)

  • Lee, Seong-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.26 no.6
    • /
    • pp.408-413
    • /
    • 2017
  • In this paper, we newly developed a byte-inverted transmission method for flicker-free visible light communication (VLC). The VLC transmitter sends original data in the former half period of the clock, and inverted data and in the latter half period of the clock. The VLC receiver receives the original data in the in the former half period of the clock. In this system, we used 480Hz clock that was generated from the 60Hz power line. The average optical power of the LED array in the transmitter is constant, thus flicker-free, in the observation time longer than the period of the clock that is about 2ms. This period is shorter than the maximum flickering time period (MFTP) of 5ms that is generally considered to be safe. This configuration is very useful in constructing indoor wireless sensor networks using LED light because it is flicker-free and does not require additional transmission channel for clock transmission.

Development of Simulator for Performance Analysis of Synchronization Clock in the Synchronization Network and Transmission Network (동기망과 전송망에서의 동기클럭 성능 분석을 위한 시뮬레이터 개발)

  • Lee, Chang-Ki
    • The KIPS Transactions:PartC
    • /
    • v.11C no.1
    • /
    • pp.123-134
    • /
    • 2004
  • The synchronized clock performance in the synchronization network and SDH transmission network design is an important element in aspect of guaranteeing network stability and data transmission. Consequently the simulator which can applicable various parameters and several input levels from the best state to the worst state for performance analysis of the synchronized clock is required in case of network design. Therefore, in this paper, 1 developed the SNCA and TNCA for analysis of the synchronized clock in the synchronization network and transmission network. And utilizing these simulators with various wander generation, node number and clock state, 1 obtained the synchronized clock characteristics and maximum network nodes In NE1, NE2 and NE3 transmission network and DOTS1, DOTS2 synchronization network.

1 Gb/s gated-oscillator burst mode CDR for half-rate clock recovery

  • Han, Pyung-Su;Choi, Woo-Young
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.4 no.4
    • /
    • pp.275-279
    • /
    • 2004
  • A new burst mode clock and data recovery circuit is realized that improves the previousldy-known gated-oscilletor technique with half rate clock recovery, The circuit was fabricated with 0.25um CMOS technology, and its functions were confirmed up to 1 Gbps.

A Design of Digital Channel Equalizer Mixing ″LMS″ and ″Stop-and-Go″ Algorithm in VSB Transmission Receiver (VSB 전송 방식에서의 LMS 알고리듬과 Stop and Go 알고리듬을 혼합한 디지털 채널 등화기 설계)

  • 이주용;정중완;이재흥;김정호
    • Proceedings of the IEEK Conference
    • /
    • 1999.11a
    • /
    • pp.899-902
    • /
    • 1999
  • In this paper, we designed a equalizer that moved the multipath of channel in 8-VSB transmission receiver. After doing the initial equalization with "LMS(Least Mean Square)"aigorithm. this equalizer used "Stop-and-Go" algorithm. Because of estimating SER(Symbol to Error Ratio) every a training sequence, this can positively cope with transformation of channel and because of using fast clock than symbol-clock(10.76 MHz), we are able to reduce a multiplier.

  • PDF

Design Issues of Digital Display Interface

  • Jeong, Deog-Kyoon;Oh, Do-Hwan
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.993-996
    • /
    • 2007
  • Depending on applications where transmission bandwidth, wire distance, power consumption and EMI environments vary, design trade-offs must be made to optimize the display interface. After introducing the digital display interface architecture, topics such as cost, EMI, signal integrity, scalability and content protection are discussed with available techniques. Implementation issues are discussed regarding their cost and design complexity. Existing standards are reviewed and comparison on their strengths and shortcomings are discussed.

  • PDF

Chromatic Dispersion Monitoring of CSRZ Signal for Optimum Compensation Using Extracted Clock-Frequency Component

  • Kim, Sung-Man;Park, Jai-Young
    • ETRI Journal
    • /
    • v.30 no.3
    • /
    • pp.461-468
    • /
    • 2008
  • This paper presents a chromatic dispersion monitoring technique using a clock-frequency component for carrier-suppressed return-to-zero (CSRZ) signal. The clock-frequency component is extracted by a clock-extraction (CE) process. To discover which CE methods are most efficient for dispersion monitoring, we evaluate the monitoring performance of each extracted clock signal. We also evaluate the monitoring ability to detect the optimum amount of dispersion compensation when optical nonlinearity exists, since it is more important in nonlinear transmission systems. We demonstrate efficient CE methods of CSRZ signal to monitor chromatic dispersion for optimum compensation in high-speed optical communication systems.

  • PDF

SDH network conversion system design for wireless transmission (무선 전송을 위한 SDH 네트워크 연동장치 설계)

  • Park, Chang-Soo;Kim, Jong-Hyoun;Yoo, Ji-Ho;Yoon, Byung-Su;Kim, Su-Hwan;Byun, Hyun-Gyu
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2018.10a
    • /
    • pp.461-463
    • /
    • 2018
  • In this paper, we have studied the devices needed for long distance wireless transmission of SDH network. This devices propose wireless transmission and measurement method of STM-1(basic transmission unit of SDH method) signal and 200Mbps synchronous ethernet. The synchronous clock recovery function is provided for STM-N transmission and synchronous ethernet transmission, and spare clock switching function is designed for stable synchronization. In addition, we discussed the measurement method of STM-N and synchronous Etherent communication method in wireless transmission section.

  • PDF

An improved SRTS algorithm for DS3 rate video communication (DS3급 영상 통신을 위한 개선된 동기식 나머지 타임스탬프(SRTS) 알고리즘)

  • 이종형;김태균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.2
    • /
    • pp.417-426
    • /
    • 1996
  • The end-to-end service clock recovery is a critical issue in providing constandt bit rate service through ATM network. The Synchronous Residual Time Stamp(SRTS) algorithm is used to recovery the source clock using time stamp of transmitter. In thispaper, we propose a Differential Residual Time Stamp (DRTS) transmission mechanism to effectively deliver the timing information of source clock in SRTS algorithm. The RTS transmission method simple in its hardware. From the results of field trial of DS3 rate interactive video communication system through B-ISDN testbed, it can be identified that DRTS method is superior to the RTS method.

  • PDF

Design and Fabrication of 10Gb/s FPLL Clock and Data Regeneration Circuit (10Gb/s FPLL 방식 클럭/데이터 재생회로 설계 및 제작)

  • Song, Jae-Ho;Yoo, Tae-Hwan;Park, Chang-Soo
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.35S no.12
    • /
    • pp.1-7
    • /
    • 1998
  • in this work, we designed and characterized a 10Gb/s clock and regeneration circuit. The circuit was realized by integrating high-speed ICs and microwave circuits on alumina substrates. The quadri-correlation method was used for frequency and phase-locked loop. The frequency locking range was 150MHz and the rms jitter generated by the circuit was measured to be less than 1.0ps. The clock and data regeneration circuit was successfully applied to 10Gb/s optical receiver.

  • PDF

Design of a 2.5 Gbps CMOS optical transmitter with 10:1 serializer using clock generation method (Reference clock 생성기를 이용한 10:1 데이터 변환 2.5 Gbps 광 송신기 설계)

  • Kang, Hyung-Won;Kim, Kyung-Min;Choi, Young-Wan
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2005.08a
    • /
    • pp.159-165
    • /
    • 2005
  • The proposed optical transmitter is composed of FF(flip flop) , PLL (phase locked loop), reference clock generator, serializer and LD driver 10x250 Mb/s data arrays are translated to the 2.5 Gb/s data signal by serializer. In this case, 1 data bus is allocated usually as a reference clock for synchronization. In this proposed optical transmitter, 125 MHz reference clock is generated from 10x250 Mb/s data arrays by reference clock generator. From this method. absent of reference clock bus is available and more data transmission become possible. To achieve high speed operation, the serializer circuit is designed as two stacks. For 10:1 serialization, 10 clocks that have 1/10 lambda differences is essential, so the VCO (voltage controlled oscillator) composed of 10 delay buffers is designed. PLL is for runing at 250 MHz, and dual PFD(phase frequency detector) is adopted for fast locking time. The optical transmitter is designed by using 0.35 um CMOS technology.

  • PDF