• 제목/요약/키워드: Cheng-Yau operator

검색결과 11건 처리시간 0.026초

CHENG -YAU OPERATOR AND GAUSS MAP OF TRANSLATION SURFACES

  • Kim, Dong Seo;Kim, Dong-Soo
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제28권1호
    • /
    • pp.43-53
    • /
    • 2021
  • We study translation surfaces in the Euclidean 3-space ��3 and the Gauss map N with respect to the so-called Cheng-Yau operator ☐. As a result, we prove that the only translation surfaces with Gauss map N satisfying ☐N = AN for some 3 × 3 matrix A are the flat ones. We also show that the only translation surfaces with Gauss map N satisfying ☐N = AN for some nonzero 3 × 3 matrix A are the cylindrical surfaces.

ON POINTWISE 1-TYPE GAUSS MAP OF SURFACES IN 𝔼31 CONCERNING CHENG-YAU OPERATOR

  • Kim, Young Ho;Turgay, Nurettin Cenk
    • 대한수학회지
    • /
    • 제54권2호
    • /
    • pp.381-397
    • /
    • 2017
  • In this paper, we study surfaces in 3-dimensional Minkowski space in terms of certain type of their Gauss map. We give several results on these surfaces whose Gauss map G satisfies ${\square}G=f(G+C)$ for a smooth function f and a constant vector C, where ${\square}$ denotes the ChengYau operator. In particular, we obtain classification theorems on the rotational surfaces in ${\mathbb{E}}^3_1$ with space-like axis of rotation in terms of type of their Gauss map concerning the Cheng-Yau operator.

ON THE GAUSS MAP OF HELICOIDAL SURFACES

  • Kim, Dong-Soo;Kim, Wonyong;Kim, Young Ho
    • 대한수학회논문집
    • /
    • 제32권3호
    • /
    • pp.715-724
    • /
    • 2017
  • We study the Gauss map G of helicoidal surfaces in the 3-dimensional Euclidean space ${\mathbb{E}}^3$ with respect to the so called Cheng-Yau operator ${\square}$ acting on the functions defined on the surfaces. As a result, we completely classify the helicoidal surfaces with Gauss map G satisfying ${\square}G=AG$ for some $3{\times}3$ matrix A.

CLASSIFICATIONS OF HELICOIDAL SURFACES WITH L1-POINTWISE 1-TYPE GAUSS MAP

  • Kim, Young Ho;Turgay, Nurettin Cenk
    • 대한수학회보
    • /
    • 제50권4호
    • /
    • pp.1345-1356
    • /
    • 2013
  • In this paper, we study rotational and helicoidal surfaces in Euclidean 3-space in terms of their Gauss map. We obtain a complete classification of these type of surfaces whose Gauss maps G satisfy $L_1G=f(G+C)$ for some constant vector $C{\in}\mathbb{E}^3$ and smooth function $f$, where $L_1$ denotes the Cheng-Yau operator.

On the Ruled Surfaces with L1-Pointwise 1-Type Gauss Map

  • Kim, Young Ho;Turgay, Nurettin Cenk
    • Kyungpook Mathematical Journal
    • /
    • 제57권1호
    • /
    • pp.133-144
    • /
    • 2017
  • In this paper, we study ruled surfaces in 3-dimensional Euclidean and Minkowski space in terms of their Gauss map. We obtain classification theorems for these type of surfaces whose Gauss map G satisfying ${\Box}G=f(G+C)$ for a constant vector $C{\in}{\mathbb{E}}^3$ and a smooth function f, where ${\Box}$ denotes the Cheng-Yau operator.

ON C-BICONSERVATIVE HYPERSURFACES OF NON-FLAT RIEMANNIAN 4-SPACE FORMS

  • Firooz Pashaie
    • 호남수학학술지
    • /
    • 제46권2호
    • /
    • pp.237-248
    • /
    • 2024
  • In this manuscript, the hypersurfaces of non-flat Riemannian 4-space forms are considered. A hypersurface of a 4-dimensional Riemannian space form defined by an isometric immersion 𝐱 : M3 → 𝕄4(c) is said to be biconservative if it satisfies the equation (∆2𝐱 ) = 0, where ∆ is the Laplace operator on M3 and ⊤ stands for the tangent component of vectors. We study an extended version of biconservativity condition on the hypersurfaces of the Riemannian standard 4-space forms. The C-biconservativity condition is obtained by substituting the Cheng-Yau operator C instead of ∆. We prove that C-biconservative hypersurfaces of Riemannian 4-space forms (with some additional conditions) have constant scalar curvature.

RULED SURFACES AND GAUSS MAP

  • KIM, DONG-SOO
    • 대한수학회보
    • /
    • 제52권5호
    • /
    • pp.1661-1668
    • /
    • 2015
  • We study the Gauss map G of ruled surfaces in the 3-dimensional Euclidean space $\mathbb{E}^3$ with respect to the so called Cheng-Yau operator ${\Box}$ acting on the functions defined on the surfaces. As a result, we establish the classification theorem that the only ruled surfaces with Gauss map G satisfying ${\Box}G=AG$ for some $3{\times}3$ matrix A are the flat ones. Furthermore, we show that the only ruled surfaces with Gauss map G satisfying ${\Box}G=AG$ for some nonzero $3{\times}3$ matrix A are the cylindrical surfaces.

SURFACES IN $\mathbb{E}^3$ WITH L1-POINTWISE 1-TYPE GAUSS MAP

  • Kim, Young Ho;Turgay, Nurettin Cenk
    • 대한수학회보
    • /
    • 제50권3호
    • /
    • pp.935-949
    • /
    • 2013
  • In this paper, we study surfaces in $\mathb{E}^3$ whose Gauss map G satisfies the equation ${\Box}G=f(G+C)$ for a smooth function $f$ and a constant vector C, where ${\Box}$ stands for the Cheng-Yau operator. We focus on surfaces with constant Gaussian curvature, constant mean curvature and constant principal curvature with such a property. We obtain some classification and characterization theorems for these kinds of surfaces. Finally, we give a characterization of surfaces whose Gauss map G satisfies the equation ${\Box}G={\lambda}(G+C)$ for a constant ${\lambda}$ and a constant vector C.

Classifications of Tubular Surface with L1-Pointwise 1-Type Gauss Map in Galilean 3-space 𝔾3

  • Kisi, Ilim;Ozturk, Gunay
    • Kyungpook Mathematical Journal
    • /
    • 제62권1호
    • /
    • pp.167-177
    • /
    • 2022
  • In this manuscript, we handle a tubular surface whose Gauss map G satisfies the equality L1G = f(G + C) for the Cheng-Yau operator L1 in Galilean 3-space 𝔾3. We give an example of a tubular surface having L1-harmonic Gauss map. Moreover, we obtain a complete classification of tubular surface having L1-pointwise 1-type Gauss map of the first kind in 𝔾3 and we give some visualizations of this type surface.