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Abstract. In this paper, we study ruled surfaces in 3-dimensional Euclidean and

Minkowski space in terms of their Gauss map. We obtain classification theorems for

these type of surfaces whose Gauss map G satisfying �G = f(G+C) for a constant vector

C ∈ E3 and a smooth function f, where � denotes the Cheng-Yau operator.

1. Introduction

Let M be a hypersurface of the Euclidean space En+1. A smooth mapping
φ : M → EN is said to be of k-type if it can be expressed as a sum of eigenvectors
of Laplace operator ∆ corresponding to k distinct eigenvalues of ∆ ([7]). If φ is an
immersion from M into En+1 is of k-type, then M itself is said to be of k-type ([3]).
The study of finite type mappings was summed up in a report by B.-Y. Chen ([4]).

On the other hand, if the Gauss map G of M is of 1-type, then it satisfies

(1.1) ∆G = λ(G+ C)

for a constant λ ∈ R and a constant vector C. In this case, M is said to have 1-type
Gauss map, [8]. However, Gauss map of some important submanifolds such as a
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helicoid and a catenoid in E3 and several rotational surfaces in E4 satisfy a very
similar equation to (1.1), namely

(1.2) ∆G = f(G+ C)

for some function f ∈ C∞(M) and a constant vector C, ([11, 12]). These subman-
ifolds whose Gauss map G satisfying (1.2) is said to have pointwise 1-type Gauss
map. Submanifolds with pointwise 1-type Gauss map have been worked in several
papers (cf. [5, 11, 16, 17, 18, 20, 21]).

In the recent years, the definition of being k-type of an hypersurface is ex-
tended in a natural way by replacing Laplace operator ∆ with a sequence operators
L0, L1, L2, . . . , Lk such that L0 = −∆, where Lk is the linearized operator of the
first variation of the (k + 1)-th mean curvature arising from normal variations of a
hypersurface M of the Euclidean space En+1. For convenience, the notation � is
used to denote the operator L1 which is called as the Cheng-Yau operator introduced
in [9]. The authors Aĺıas et al. studied an isometric immersion x : Mn → Rn+1

satisfying Lk(x) = Ax + b for a constant matrix A and a constant vector b, where
k is a positive integer.

In [15], the authors give the following definition.

Definition 1.([15]) An oriented surface M of Euclidean space E3 is said to have
�-pointwise 1-type Gauss map if its Gauss map satisfies

(1.3) �G = f(G+ C)

for a smooth function f ∈ C∞(M) and a constant vector C ∈ E3. More precisely, a
�-pointwise 1-type Gauss map is said to be of the first kind if (1.3) is satisfied for
C = 0; otherwise, it is said to be of the second kind. Moreover, if (1.3) is satisfied
for a constant function f , then we say M has �-(global) 1-type Gauss map.

In the same paper, authors states

Open Problem. Classify surfaces in E3 with �-1-type Gauss map.

On the other hand, there are many studies done on rotational surfaces, ruled
surfaces and translation surfaces in terms of being finite type or having pointwise
1-type Gauss map. For example, in [5] and [14], the rotational surfaces of the
Euclidean 3-space E3 and the Minkowski 3-space E3

1 with (∆-)pointwise 1-type
Gauss map have been studied. Also, a classification of ruled surfaces in terms of
their Gauss map was studied in [6] and [16].

In this paper, we study rotational surfaces, ruled surfaces and translation sur-
faces in E3 and E3

1 with �-pointwise 1-type Gauss map.

2. Prelimineries

Let q ∈ {0, 1} and E3
q denote the 3-dimensional semi-Euclidean space with the

canonical semi-Euclidean metric tensor of index q given by

g = 〈 , 〉 = (−1)qdx21 + dx22 + dx23.
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A non-zero vector u in the Minkowski space E3
1 is called space-like (resp., time-

like or light-like) if 〈u, u〉 > 0 (resp., 〈u, u〉 < 0 or 〈u, u〉 = 0). Furthermore, a
curve β is called space-like (resp., time-like or light-like) if its tangent vector β′ is
space-like (resp., time-like or light-like) at every point.

On the other hand, a two dimensional subspace U of E3
1 is called non-degenerate

if U ∩ U⊥ = {0} and a non-degenerate subspace U of index r is called space-like
(resp., time-like) if r = 0 (resp., r = 1). Eventually, a surface M in E3

1 is called
non-degenerate, (resp., degenerate, space-like or time-like) if its tangent space TpM
is non-degenerate, (resp., degenerate, space-like or time-like) at every point p ∈M .

The following lemmas are well-known and useful (see, for instance [13]):

Lemma 2.1. Let u, v be two orthogonal vectors in E3
1. If u is time-like, then v is

space-like.

Lemma 2.2. Two light-like vectors are orthogonal if and only if they are linearly
dependent.

Lemma 2.3. A two dimensional subspace U of E3
1 is a time-like space if and only

if it contains two linearly independent lightlike vectors.

2.1. Surfaces in 3-dimensional Euclidean and Minkowski spaces

Let M be an oriented surface in E3
q. We denote the Levi-Civita connections of

E3
1 and M by ∇̃ and ∇, respectively and D stands for the normal connection of M .

We put

ε =

{
1 if M is space-like
−1 if M is time-like

.

Then, we have 〈N,N〉 = (−1)qε, where N is the unit normal vector field asso-
ciated with the orientation of M . The mapping G : M → E3

q which assigns every
point p to N(p) is called the Gauss map of M .

The well-known Gauss and Weingarten formulas are given by

∇̃XY = ∇XY + h(X,Y ),(2.1)

∇̃XN = −S(X)(2.2)

for tangent vector fields X, Y of M , where h is the second fundamental form and
S is the shape operator of M . The covariant derivative of h is defined by

(∇̄Xh)(Y,Z) = DXh(Y,Z)− h(∇XY,Z)− h(Y,∇XZ)

Then, the Codazzi equation is given by

(∇̄Xh)(Y,Z) = (∇̄Y h)(X,Z)(2.3)

for tangent vector fields X, Y, Z of M . Note that S and h satisfy 〈S(X), Y 〉 =
〈h(X,Y ), N〉.
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The functions Q, H and K defined by Q(λ) = det(S − λI) = λ2 − 2Hλ + K
are called the characteristic polynomial of S, the mean curvature of M and the
Gaussian curvature of M , respectively. M is said to be minimal (resp., flat) if H
(resp., K) vanishes identically. Sometimes the (complex valued) functions λ1 and
λ2 satisfying Q(λi) = 0, i = 1, 2 are called the principal curvatures of M .

The Gauss equation is given by

R(e1, e2, e2, e1) = K,(2.4)

where R is the curvature tensor associated with connection ∇ and e1, e2 are or-
thonormal vector fields on M .

We will use χ(M) to denote the space of all smooth functions from M into E3
q

and C∞(M) the space of all smooth functions defined on M . Let B = {e1, e2, e3} be
an orthonormal frame field defined on M , i.e., 〈e1, e1〉 = ε, 〈e2, e2〉 = 1, e3 = N and
〈ei, ej〉 = 0 for i 6= j (i, j = 1, 2, 3). If X ∈ χ(M) is tangent to M , its divergence
divX is defined by divX = ε〈∇e1X, e1〉 + 〈∇e2X, e2〉. On the other hand, the
gradient of a function f ∈ C∞(M) is given by ∇f = εe1(f)e1 + e2(f)e2 and the
Laplace operator acting on M is given as ∆ = −ε∇e1e1 −∇e2e2 + e1e1 + e2e2.

2.2. Surfaces with �-pointwise 1-type Gauss map

Let M be a surface in E3
q and P0, P1 the Newton transformations given by

P0 = I, P1 = 2HI − S, where I is the identity operator acting on the tangent
bundle of M . Then, the second order differential operators Lk : C∞(M)→ C∞(M)
associated with Pk are given by Lk(f) = tr(Pk ◦∇2f), k = 1, 2. Note that we have
L0 = −∆ and L1 = �, where � is the Cheng-Yau operator introduced in [9]. As a
matter of fact, it turns out to be

(2.5) Lkf = div (Pk (∇f))

for f ∈ C∞(M) ([2]).
We will use following lemma and theorems in [15].

Lemma 2.4.([15]) Let M be an oriented surface in E3 with Gaussian curvature K
and mean curvature H. Then, the Gauss map G of M satisfies

�G = −∇K − 2HKG.(2.6)

Theorem 2.5.([15]) An oriented surface M in E3 has �-harmonic Gauss map if
and only if it is flat, i.e, its Gaussian curvature vanishes identically.

Theorem 2.6.([15]) An oriented surface M in E3 has �-pointwise 1-type Gauss
map of the first kind if and only if it has constant Gaussian curvature.

Theorem 2.7.([15]) An oriented minimal surface M in E3 has �-pointwise 1-type
Gauss map if and only if it is an open part of a plane.
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3. Ruled Surfaces in E3

Let M be a ruled surface in E3 given by (2.5). Then, as a surface, we have
xt = β 6= 0 and x(s, t) = α + t̃β̃ where t̃ = t〈β, β〉1/2 and β̃ = β/〈β, β〉1/2. Thus,
without loss of generality, we may assume 〈β, β〉 = 1. By re-defining s appropriately,
we also suppose that 〈β′, β′〉 = 1. Moreover, for another base curve ᾱ of M given
by ᾱ(s) = α(s) + g(s)β(s) with g′(s) + 〈α′(s), β(s)〉 = 0 we have 〈ᾱ′, β〉 = 0. Hence,
without loss of generality, we may also assume 〈α′, β〉 = 0.

Because of these assumptions, we have

(3.1) α′ = aβ′ + bβ ∧ β′

and
β′′ = −β + cβ ∧ β′

for some smooth functions a = a(s), b = b(s) and c = c(s).
We choose an orthonormal frame field as

e1 =
1

E
∂s,(3.2a)

e2 = ∂t,(3.2b)

G =
1

E
(bβ′ − (a+ t)β ∧ β′)(3.2c)

where

E =
√
b2 + (a+ t)2.(3.3)

By a direct calculation, we obtain the connection form ω2
1 as

ω2
1 = wθ1, w = −a+ t

E2
,(3.4)

where {θ1, θ2} is the dual base of {e1, e2}. Moreover, the Gaussian curvature K
and the mean curvature H are given by

K = −h22,(3.5)

H = h1/2,(3.6)

where

h1 = 〈h(e1, e1), G〉 =
b(a′ − bc)− b′(a+ t)− c(a+ t)2

E3
,(3.7)

h2 = 〈h(e1, e2), G〉 =
b

E2
.(3.8)

On the other hand, from the Codazzi equation (2.3) and the Gauss equation
(2.4) we obtain

wt = w2 +K,(3.9)

h1,t =
h2,s
E

+ wh1,(3.10)

h2,t = 2wh2.(3.11)
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By using (3.5) and (3.11), we obtain

(3.12) Kt = 4wK.

3.1. Ruled surfaces with �-pointwise 1-type Gauss map of the first kind

We first give the following theorem:

Theorem 3.1. Let M be a non-cylindrical ruled surface whose position vector given
by (2.5). Then, the following statements are equivalent:

(1) M has �-pointwise 1-type Gauss map of the first kind.

(2) M has �-harmonic Gauss map.

(3) α′ = aβ′ for a smooth function a.

Proof. (1) ⇔ (2) : Kt = 0 implies Kw = 0 because of (3.12). Thus, if Kt = 0
and K 6= 0 at a point p of M, then there exists a neighborhood Np of p such that

ω
∣∣∣
Np

= 0 which is not possible because of (3.4). Therefore, we have if K is constant,

then K = 0. Hence, from Theorem 2.5 and Theorem 2.6 we obtain (1)⇔ (2).

(2) ⇔ (3) : Because of (3.5) and (3.8), M is flat if and only if b ≡ 0 which is
equivalent to α′ = aβ′ because of (3.1). 2

3.2. Ruled surfaces with �-pointwise 1-type Gauss map of the second
kind

Theorem 3.2. A ruled surface in E3 has �-pointwise 1-type Gauss map of the
second kind if and only if M is flat.

Proof. Let M be a ruled surface in E3 given by (2.5) with �-pointwise 1-type
Gauss map of the second kind. Then, there exist a function f and a vector C =
C1e1 + C2e2 + C3G such that

fC1 = −Ks

E
,(3.13a)

fC2 = −Kt,(3.13b)

f(C3 + 1) = −2KH.(3.13c)

Note that from (3.12) and (3.13b) we obtain

fC2 = −4Kw.(3.14)

On the other hand, by using Gauss and Weingarten formulas, we obtain

∇∂t
C = (C1,t)e1 + (C2,t)e2 + (C3,t)G+ C1h2G− C3h2e1.
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Thus, ∇∂t
C = 0 implies

C1,t = h2C3,(3.15a)

C2,t = 0,(3.15b)

C3,t = −h2C1.(3.15c)

Now, we assume towards a contradiction that M is not flat, i.e., the open subset
M = {p ∈M |K(p) 6= 0} of M is not empty. By multiplying both sides of (3.13c) by
C2 and using (3.6) and (3.14), we obtain K (4w(C3 + 1)− h1C2) = 0 from which
we get

4w(C3 + 1) = h1C2

on M. By taking derivative of this equation and using (3.9), (3.10), we obtain

4(w2 +K)(C3 + 1)− 4wh2C1 =

(
h2,s
E

+ wh1

)
C2

on M. Next, we multiply both sides of this equation by f and use (3.13a), (3.13c)
and (3.14) to obtain K

(
h22h1E + 3w ∂h2

∂s

)
= 0 from which we get

h22h1E + 3w
∂h2
∂s

= 0(3.16)

on M.
By using (3.3), (3.4), (3.7) and (3.8) in (3.16), we obtain

(3.17) b3(a′ − bc) + 2b2b′(a+ t) + (−cb2 + 6a′b)(a+ t)2 − 3b′(a+ t)3 = 0

on M, from which, we obtain b is a constant and

b(a′ − bc) = 0,(3.18a)

b(6a′ − bc) = 0.(3.18b)

Note that if b = 0, then (3.1) implies α′ = aβ′ and from Theorem 3.1 we have
M is flat which yields a contradiction. Thus, we have b 6= 0.

From (3.18) we have a′ = c = 0. Therefore, (3.6) and (3.7) imply that M is
minimal. However, Theorem 2.7 implies that M is an open part of a plane which is
contradiction since K 6= 0 on M. Hence we have M is an empty set, i. e., M is flat.

The converse is obvious. 2

3.3. Ruled surfaces with �G = AG for a matrix A ∈ R3x3

In this section, we suppose that M is a ruled surface whose Gauss map satisfies
�G = AG for some matrix A ∈ R3x3 with real entities. From this equation and
(2.6) we obtain

−AG = e1(K)e1 + e2(K)e2 + 2KHG.
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By taking covariant derivative of this equation on the direction e2 we have

−∇̃e2(AG) = ASe2 = (e2e1(K)− 2KHh2) e1+e2e2(K)e2+(h2e1(K) + 2e2(KH))G

as ∇e2e1 = ∇e2e2 = 0 and h(e2, e2) = 0. From this equation we obtain

h2〈Ae1, e2〉 = Ktt.(3.19)

Note that, by using (3.9) and (3.12), one can obtain Ktt = 20w2K + 4K2. On
the other hand, by using (3.2) we obtain

〈Ae1, e2〉 =
1

E
((a+ t)〈Aβ′, β〉+ b〈A(β ∧ β′), β〉) .

From this equation and (3.19) we have

〈Aβ′, β〉E5(a+ t) + b〈A(β ∧ β′), β〉E5 + 20b(a+ t)− 4b3 = 0

which implies b = 0, i. e., M is flat. Hence, we have

Theorem 3.3. The Gauss map G of a ruled surface in E3 satisfies �G = AG for
a matrix A ∈ R3x3 if and only if M is flat.

Combining Theorem 3.2 and Theorem 3.3, we obtain

Theorem 3.4. Let M be a non-cylindrical ruled surface whose position vector given
by (2.5). Then, the following statements are equivalent:

(1) M has �-pointwise 1-type Gauss map of the second kind.

(2) The Gauss map G of M satisfies �G = AG for a matrix A ∈ R3x3.

(3) M is flat.

4. Null scrolls in E3
1

A non-degenerate ruled surface M in E3
1 given by (2.5) is called a null scroll if

〈β, β〉 = 〈α′, α′〉 = 0 and 〈α′, β〉 6= 0. In this case, without loss of generality we may
assume that 〈α′, β〉 = 1. Furthermore, we may choose an appropriate parameter s
in such a way that 〈α′, β′〉 = 0, which is possible if the base curve α is chosen as a
null geodesic of M .

On the other hand, if 〈β′, β′〉 = 0 at an open subset M of M , then there exists
a function a such that β′ = aβ which implies β = (β1, β2, β3) is β = β1c0 for a
constant light-like vector c0 ∈ E3

1. Hence, we may assume β = c0 which implies
that M is cylindirical. Therefore, we may locally assume 〈β′, β′〉 = E2 > 0.

The tangent vector fields e1 = −∂s + (t2E2/2)∂t and e2 = ∂t form a pseudo-
orthonormal frame field and the unit nomal vector field is N = −E−1β′ + tEβ. By
a direct calculation, we obtain

Se1 = −Ee1 + be2, Se2 = −Ee2,(4.1a)

∇̃e1e2 = −tE2e2 + EN, ∇̃e2e2 = 0(4.1b)
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for a non-vanishing function b. From (4.1a) we have H = E which implies

(4.2) P1 = −2EI − S.

4.1. Gauss map of null scrolls

In the next lemma, we obtain �G for a null scroll in E3
1.

Lemma 4.1. Let M be a null scroll in E3
1. Then, the Gauss map G of M satisfies

(4.3) �G = −2EE′e2 + 2E3G.

Proof. Let C be a constant vector in E3
1. By a direct computation, we obtain

∇〈G,C〉 = −E〈e2, C〉e1 − E〈e1, C〉e2 + b〈e2, C〉e2.

By considering (4.2), we get

P1(∇〈G,C〉) = E2〈e2, C〉e1 + E2〈e1, C〉e2.

By using this equation and (2.5), we obtain

〈�G,C〉 = −〈∇e1

(
E2〈e2, C〉e1 + E2〈e1, C〉e2

)
, e2〉

− 〈∇e2

(
E2〈e2, C〉e1 + E2E2〈e1, C〉e2

)
, e1〉(4.4)

= e1(E2)〈e2, C〉+ e2(E2)〈e1, C〉+ 2E2〈h(e1, e2), C〉
= 〈−2EE′e2 + 2E3G,C〉.

Thus, we have (4.3). 2

Example 1. If α(s) is a null curve in E3
1 with the Cartan frame {A,B,C} such

that 〈A,A〉 = 〈B,B〉 = 0, 〈A,B〉 = −1, 〈A,C〉 = 〈B,C〉 = 0 and 〈C,C〉 = 1 with
α′ = A, A′ = k1(s)C and B′ = k2C for a constant k2 and a smooth function k1
and β(s) = B(s), then the null scroll given by (2.5) is said to be a B-scroll. It is
well-known that a null scroll M is a B-scroll if and only if E is a constant (see [19]).
In this case, the Gauss map of M satisfies

�G = 2E3G

because of (4.3) which implies M has �-1-type Gauss map of the first kind.

Next, we want to give classification of null scrolls in E3
1 with �-pointwise 1-type

Gauss map.

Proposition 4.2. A null scroll in E3
1 has �-pointwise 1-type Gauss map if and

only if it is a B-scroll.
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Proof. Let M be a null scroll in E3
1 with �-pointwise 1-type Gauss map. Then, the

Gauss map G of M satisfies

(4.5) −2EE′e2 + 2E3G = f(G+ C)

for a constant vector C and a smooth function f . From (4.5) we have

(4.6) f〈C, e2〉 = 0.

Now, we consider the open subset M = {p ∈ M |f(p) 6= 0} of M on which
〈C, e2〉 = 0 is satisfied. From this equation we get

(4.7) e1
(
〈e2, C〉

)
= 0

on M. By a further calculation taking into account of Gauss formula (2.1), (4.6)
and (4.7), we obtain

(4.8) 〈G,C〉 = 0.

By combining (4.6) and (4.8), we obtain C = C1e2 = C1β. From which we get
C = 0. Thus, (4.5) implies E is constant. Hence M is a B-scroll.

The converse is given in Example 1. 2

Now, we obtain the following proposition.

Proposition 4.3. Let M be a null scroll in E3
1. Then, its Gauss map satisfies

�G = AG for a constant 3× 3-matrix A if and only if M is a B-scroll.

Proof. Suppose the the Gauss map G of M satisfies �G = AG for a constant
3× 3-matrix A. Then, we have

(4.9) −2EE′e2 + 2E3G = AG,

from which, we get

−2EE′∇̃e2e2 + 2E3∇̃e2G = A
(
∇̃e2G

)
.

By using (4.1), we obtain

(4.10) Ae2 = 2E3e2

from which we get A
(
∇̃e1e2

)
= 2E3∇̃e1e2. From this equation and (4.1b) we obtain

−tE2Ae2 + EAG = E3(−tE2e2 + EG).

By combining this equation with (4.9) and (4.10), we obtain EE′ = 0 which
implies E is constant. Hence, M is a B-scroll.

The converse is given in Example 1. 2

By combining Proposition 4.2 and Proposition 4.3 with the result of [1], we
obtain the following theorem.

Theorem 4.4. Let M be a null scroll in E3
1. Then the following conditions are

equivalent.
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(i) M has �-pointwise 1-type Gauss map.

(ii) The Gauss map G of M satisfies ∆G = AG for a constant 3× 3-matrix A.

(iii) The Gauss map G of M satisfies �G = AG for a constant 3× 3-matrix A.

(iv) M is a B-scroll.

Acknowledgements. This work was done while the second named author was
visiting Kyungpook National University, Korea between February and August in
2012.

References
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