On the Ruled Surfaces with L_{1}-Pointwise 1-Type Gauss Map

Young Ho Kim*
Department of Mathematics, Kyungpook National University, Daegu 41566, Korea
e-mail: yhkim@knu.ac.kr

Nurettin Cenk Turgay
Department of Mathematics, Istanbul Technical University, 34469 Maslak, Istanbul, Turkey
e-mail: turgayn@itu.edu.tr
Abstract. In this paper, we study ruled surfaces in 3-dimensional Euclidean and Minkowski space in terms of their Gauss map. We obtain classification theorems for these type of surfaces whose Gauss map G satisfying $\square G=f(G+C)$ for a constant vector $C \in \mathbb{E}^{3}$ and a smooth function f, where \square denotes the Cheng-Yau operator.

1. Introduction

Let M be a hypersurface of the Euclidean space \mathbb{E}^{n+1}. A smooth mapping $\phi: M \rightarrow \mathbb{E}^{N}$ is said to be of k-type if it can be expressed as a sum of eigenvectors of Laplace operator Δ corresponding to k distinct eigenvalues of Δ ([7]). If ϕ is an immersion from M into \mathbb{E}^{n+1} is of k-type, then M itself is said to be of k-type ([3]). The study of finite type mappings was summed up in a report by B.-Y. Chen ([4]).

On the other hand, if the Gauss map G of M is of 1-type, then it satisfies

$$
\begin{equation*}
\Delta G=\lambda(G+C) \tag{1.1}
\end{equation*}
$$

for a constant $\lambda \in \mathbb{R}$ and a constant vector C. In this case, M is said to have 1-type Gauss map, [8]. However, Gauss map of some important submanifolds such as a

* Corresponding Author.

Received June 18, 2014; accepted October 17, 2014.
2010 Mathematics Subject Classification: 53B25, 53C40.
Key words and phrases: Cheng-Yau operator, Gauss map, null scroll, pointwise 1-type, ruled surface.
This work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology(2012R1A1A2042298).
helicoid and a catenoid in \mathbb{E}^{3} and several rotational surfaces in \mathbb{E}^{4} satisfy a very similar equation to (1.1), namely

$$
\begin{equation*}
\Delta G=f(G+C) \tag{1.2}
\end{equation*}
$$

for some function $f \in C^{\infty}(M)$ and a constant vector C, ([11, 12]). These submanifolds whose Gauss map G satisfying (1.2) is said to have pointwise 1-type Gauss map. Submanifolds with pointwise 1-type Gauss map have been worked in several papers (cf. [5, 11, 16, 17, 18, 20, 21]).

In the recent years, the definition of being k-type of an hypersurface is extended in a natural way by replacing Laplace operator Δ with a sequence operators $L_{0}, L_{1}, L_{2}, \ldots, L_{k}$ such that $L_{0}=-\Delta$, where L_{k} is the linearized operator of the first variation of the $(k+1)$-th mean curvature arising from normal variations of a hypersurface M of the Euclidean space \mathbb{E}^{n+1}. For convenience, the notation \square is used to denote the operator L_{1} which is called as the Cheng-Yau operator introduced in [9]. The authors Alías et al. studied an isometric immersion $x: M^{n} \rightarrow R^{n+1}$ satisfying $L_{k}(x)=A x+b$ for a constant matrix A and a constant vector b, where k is a positive integer.

In [15], the authors give the following definition.
Definition 1.([15]) An oriented surface M of Euclidean space \mathbb{E}^{3} is said to have \square-pointwise 1-type Gauss map if its Gauss map satisfies

$$
\begin{equation*}
\square G=f(G+C) \tag{1.3}
\end{equation*}
$$

for a smooth function $f \in C^{\infty}(M)$ and a constant vector $C \in \mathbb{E}^{3}$. More precisely, a \square-pointwise 1-type Gauss map is said to be of the first kind if (1.3) is satisfied for $C=0$; otherwise, it is said to be of the second kind. Moreover, if (1.3) is satisfied for a constant function f, then we say M has \square-(global) 1-type Gauss map.

In the same paper, authors states
Open Problem. Classify surfaces in \mathbb{E}^{3} with \square-1-type Gauss map.
On the other hand, there are many studies done on rotational surfaces, ruled surfaces and translation surfaces in terms of being finite type or having pointwise 1-type Gauss map. For example, in [5] and [14], the rotational surfaces of the Euclidean 3 -space \mathbb{E}^{3} and the Minkowski 3 -space \mathbb{E}_{1}^{3} with (Δ-)pointwise 1 -type Gauss map have been studied. Also, a classification of ruled surfaces in terms of their Gauss map was studied in [6] and [16].

In this paper, we study rotational surfaces, ruled surfaces and translation surfaces in \mathbb{E}^{3} and \mathbb{E}_{1}^{3} with \square-pointwise 1-type Gauss map.

2. Prelimineries

Let $q \in\{0,1\}$ and \mathbb{E}_{q}^{3} denote the 3-dimensional semi-Euclidean space with the canonical semi-Euclidean metric tensor of index q given by

$$
g=\langle,\rangle=(-1)^{q} d x_{1}^{2}+d x_{2}^{2}+d x_{3}^{2}
$$

A non-zero vector u in the Minkowski space \mathbb{E}_{1}^{3} is called space-like (resp., timelike or light-like) if $\langle u, u\rangle>0$ (resp., $\langle u, u\rangle<0$ or $\langle u, u\rangle=0$). Furthermore, a curve β is called space-like (resp., time-like or light-like) if its tangent vector β^{\prime} is space-like (resp., time-like or light-like) at every point.

On the other hand, a two dimensional subspace U of \mathbb{E}_{1}^{3} is called non-degenerate if $U \cap U^{\perp}=\{0\}$ and a non-degenerate subspace U of index r is called space-like (resp., time-like) if $r=0$ (resp., $r=1$). Eventually, a surface M in \mathbb{E}_{1}^{3} is called non-degenerate, (resp., degenerate, space-like or time-like) if its tangent space $T_{p} M$ is non-degenerate, (resp., degenerate, space-like or time-like) at every point $p \in M$.

The following lemmas are well-known and useful (see, for instance [13]):
Lemma 2.1. Let u, v be two orthogonal vectors in \mathbb{E}_{1}^{3}. If u is time-like, then v is space-like.

Lemma 2.2. Two light-like vectors are orthogonal if and only if they are linearly dependent.

Lemma 2.3. A two dimensional subspace U of \mathbb{E}_{1}^{3} is a time-like space if and only if it contains two linearly independent lightlike vectors.

2.1. Surfaces in 3-dimensional Euclidean and Minkowski spaces

Let M be an oriented surface in \mathbb{E}_{q}^{3}. We denote the Levi-Civita connections of \mathbb{E}_{1}^{3} and M by $\widetilde{\nabla}$ and ∇, respectively and D stands for the normal connection of M. We put

$$
\varepsilon=\left\{\begin{array}{rl}
1 & \text { if } M \text { is space-like } \\
-1 & \text { if } M \text { is time-like }
\end{array} .\right.
$$

Then, we have $\langle N, N\rangle=(-1)^{q} \varepsilon$, where N is the unit normal vector field associated with the orientation of M. The mapping $G: M \rightarrow \mathbb{E}_{q}^{3}$ which assigns every point p to $N(p)$ is called the Gauss map of M.

The well-known Gauss and Weingarten formulas are given by

$$
\begin{align*}
\widetilde{\nabla}_{X} Y & =\nabla_{X} Y+h(X, Y) \tag{2.1}\\
\widetilde{\nabla}_{X} N & =-S(X) \tag{2.2}
\end{align*}
$$

for tangent vector fields X, Y of M, where h is the second fundamental form and S is the shape operator of M. The covariant derivative of h is defined by

$$
\left(\bar{\nabla}_{X} h\right)(Y, Z)=D_{X} h(Y, Z)-h\left(\nabla_{X} Y, Z\right)-h\left(Y, \nabla_{X} Z\right)
$$

Then, the Codazzi equation is given by

$$
\begin{equation*}
\left(\bar{\nabla}_{X} h\right)(Y, Z)=\left(\bar{\nabla}_{Y} h\right)(X, Z) \tag{2.3}
\end{equation*}
$$

for tangent vector fields X, Y, Z of M. Note that S and h satisfy $\langle S(X), Y\rangle=$ $\langle h(X, Y), N\rangle$.

The functions Q, H and K defined by $Q(\lambda)=\operatorname{det}(S-\lambda I)=\lambda^{2}-2 H \lambda+K$ are called the characteristic polynomial of S, the mean curvature of M and the Gaussian curvature of M, respectively. M is said to be minimal (resp., flat) if H (resp., K) vanishes identically. Sometimes the (complex valued) functions λ_{1} and λ_{2} satisfying $Q\left(\lambda_{i}\right)=0, i=1,2$ are called the principal curvatures of M.

The Gauss equation is given by

$$
\begin{equation*}
R\left(e_{1}, e_{2}, e_{2}, e_{1}\right)=K \tag{2.4}
\end{equation*}
$$

where R is the curvature tensor associated with connection ∇ and e_{1}, e_{2} are orthonormal vector fields on M.

We will use $\chi(M)$ to denote the space of all smooth functions from M into \mathbb{E}_{q}^{3} and $C^{\infty}(M)$ the space of all smooth functions defined on M. Let $\mathbb{B}=\left\{e_{1}, e_{2}, e_{3}\right\}$ be an orthonormal frame field defined on M, i.e., $\left\langle e_{1}, e_{1}\right\rangle=\varepsilon,\left\langle e_{2}, e_{2}\right\rangle=1, e_{3}=N$ and $\left\langle e_{i}, e_{j}\right\rangle=0$ for $i \neq j(i, j=1,2,3)$. If $X \in \chi(M)$ is tangent to M, its divergence $\operatorname{div} X$ is defined by $\operatorname{div} X=\varepsilon\left\langle\nabla_{e_{1}} X, e_{1}\right\rangle+\left\langle\nabla_{e_{2}} X, e_{2}\right\rangle$. On the other hand, the gradient of a function $f \in C^{\infty}(M)$ is given by $\nabla f=\varepsilon e_{1}(f) e_{1}+e_{2}(f) e_{2}$ and the Laplace operator acting on M is given as $\Delta=-\varepsilon \nabla_{e_{1}} e_{1}-\nabla_{e_{2}} e_{2}+e_{1} e_{1}+e_{2} e_{2}$.

2.2. Surfaces with \square-pointwise 1-type Gauss map

Let M be a surface in \mathbb{E}_{q}^{3} and P_{0}, P_{1} the Newton transformations given by $P_{0}=I, P_{1}=2 H I-S$, where I is the identity operator acting on the tangent bundle of M. Then, the second order differential operators $L_{k}: C^{\infty}(M) \rightarrow C^{\infty}(M)$ associated with P_{k} are given by $L_{k}(f)=\operatorname{tr}\left(P_{k} \circ \nabla^{2} f\right), k=1,2$. Note that we have $L_{0}=-\Delta$ and $L_{1}=\square$, where \square is the Cheng-Yau operator introduced in [9]. As a matter of fact, it turns out to be

$$
\begin{equation*}
L_{k} f=\operatorname{div}\left(P_{k}(\nabla f)\right) \tag{2.5}
\end{equation*}
$$

for $f \in C^{\infty}(M)([2])$.
We will use following lemma and theorems in [15].
Lemma 2.4.([15]) Let M be an oriented surface in \mathbb{E}^{3} with Gaussian curvature K and mean curvature H. Then, the Gauss map G of M satisfies

$$
\begin{equation*}
\square G=-\nabla K-2 H K G \tag{2.6}
\end{equation*}
$$

Theorem 2.5.([15]) An oriented surface M in \mathbb{E}^{3} has \square-harmonic Gauss map if and only if it is flat, i.e, its Gaussian curvature vanishes identically.

Theorem 2.6.([15]) An oriented surface M in \mathbb{E}^{3} has \square-pointwise 1-type Gauss map of the first kind if and only if it has constant Gaussian curvature.
Theorem 2.7.([15]) An oriented minimal surface M in \mathbb{E}^{3} has \square-pointwise 1-type Gauss map if and only if it is an open part of a plane.

3. Ruled Surfaces in \mathbb{E}^{3}

Let M be a ruled surface in \mathbb{E}^{3} given by (2.5). Then, as a surface, we have $x_{t}=\beta \neq 0$ and $x(s, t)=\alpha+\tilde{t} \tilde{\beta}$ where $\tilde{t}=t\langle\beta, \beta\rangle^{1 / 2}$ and $\tilde{\beta}=\beta /\langle\beta, \beta\rangle^{1 / 2}$. Thus, without loss of generality, we may assume $\langle\beta, \beta\rangle=1$. By re-defining s appropriately, we also suppose that $\left\langle\beta^{\prime}, \beta^{\prime}\right\rangle=1$. Moreover, for another base curve $\bar{\alpha}$ of M given by $\bar{\alpha}(s)=\alpha(s)+g(s) \beta(s)$ with $g^{\prime}(s)+\left\langle\alpha^{\prime}(s), \beta(s)\right\rangle=0$ we have $\left\langle\bar{\alpha}^{\prime}, \beta\right\rangle=0$. Hence, without loss of generality, we may also assume $\left\langle\alpha^{\prime}, \beta\right\rangle=0$.

Because of these assumptions, we have

$$
\begin{equation*}
\alpha^{\prime}=a \beta^{\prime}+b \beta \wedge \beta^{\prime} \tag{3.1}
\end{equation*}
$$

and

$$
\beta^{\prime \prime}=-\beta+c \beta \wedge \beta^{\prime}
$$

for some smooth functions $a=a(s), b=b(s)$ and $c=c(s)$.
We choose an orthonormal frame field as

$$
\begin{align*}
e_{1} & =\frac{1}{E} \partial_{s} \tag{3.2a}\\
e_{2} & =\partial_{t} \tag{3.2~b}\\
G & =\frac{1}{E}\left(b \beta^{\prime}-(a+t) \beta \wedge \beta^{\prime}\right) \tag{3.2c}
\end{align*}
$$

where

$$
\begin{equation*}
E=\sqrt{b^{2}+(a+t)^{2}} \tag{3.3}
\end{equation*}
$$

By a direct calculation, we obtain the connection form ω_{1}^{2} as

$$
\begin{equation*}
\omega_{1}^{2}=w \theta_{1}, \quad w=-\frac{a+t}{E^{2}} \tag{3.4}
\end{equation*}
$$

where $\left\{\theta_{1}, \theta_{2}\right\}$ is the dual base of $\left\{e_{1}, e_{2}\right\}$. Moreover, the Gaussian curvature K and the mean curvature H are given by

$$
\begin{align*}
K & =-h_{2}^{2} \tag{3.5}\\
H & =h_{1} / 2 \tag{3.6}
\end{align*}
$$

where

$$
\begin{align*}
& h_{1}=\left\langle h\left(e_{1}, e_{1}\right), G\right\rangle \tag{3.7}\\
& h_{2}=\left\langle h\left(e_{1}, e_{2}\right), G\right\rangle=\frac{b\left(a^{\prime}-b c\right)-b^{\prime}(a+t)-c(a+t)^{2}}{E^{3}} \tag{3.8}\\
& E^{2}
\end{align*}
$$

On the other hand, from the Codazzi equation (2.3) and the Gauss equation (2.4) we obtain

$$
\begin{align*}
w_{t} & =w^{2}+K \tag{3.9}\\
h_{1, t} & =\frac{h_{2, s}}{E}+w h_{1} \tag{3.10}\\
h_{2, t} & =2 w h_{2} \tag{3.11}
\end{align*}
$$

By using (3.5) and (3.11), we obtain

$$
\begin{equation*}
K_{t}=4 w K \tag{3.12}
\end{equation*}
$$

3.1. Ruled surfaces with \square-pointwise 1-type Gauss map of the first kind

We first give the following theorem:
Theorem 3.1. Let M be a non-cylindrical ruled surface whose position vector given by (2.5). Then, the following statements are equivalent:
(1) M has \square-pointwise 1-type Gauss map of the first kind.
(2) M has \square-harmonic Gauss map.
(3) $\alpha^{\prime}=a \beta^{\prime}$ for a smooth function a.

Proof. (1) $\Leftrightarrow(2): K_{t}=0$ implies $K w=0$ because of (3.12). Thus, if $K_{t}=0$ and $K \neq 0$ at a point p of M, then there exists a neighborhood \mathcal{N}_{p} of p such that $\left.\omega\right|_{\mathcal{N}_{p}}=0$ which is not possible because of (3.4). Therefore, we have if K is constant, then $K=0$. Hence, from Theorem 2.5 and Theorem 2.6 we obtain $(1) \Leftrightarrow(2)$.
$(2) \Leftrightarrow(3)$: Because of (3.5) and (3.8), M is flat if and only if $b \equiv 0$ which is equivalent to $\alpha^{\prime}=a \beta^{\prime}$ because of (3.1).

3.2. Ruled surfaces with \square-pointwise 1-type Gauss map of the second kind

Theorem 3.2. A ruled surface in \mathbb{E}^{3} has \square-pointwise 1-type Gauss map of the second kind if and only if M is flat.
Proof. Let M be a ruled surface in \mathbb{E}^{3} given by (2.5) with \square-pointwise 1-type Gauss map of the second kind. Then, there exist a function f and a vector $C=$ $C_{1} e_{1}+C_{2} e_{2}+C_{3} G$ such that

$$
\begin{align*}
f C_{1} & =-\frac{K_{s}}{E}, \tag{3.13a}\\
f C_{2} & =-K_{t} \tag{3.13b}\\
f\left(C_{3}+1\right) & =-2 K H \tag{3.13c}
\end{align*}
$$

Note that from (3.12) and (3.13b) we obtain

$$
\begin{equation*}
f C_{2}=-4 K w \tag{3.14}
\end{equation*}
$$

On the other hand, by using Gauss and Weingarten formulas, we obtain

$$
\nabla_{\partial_{t}} C=\left(C_{1, t}\right) e_{1}+\left(C_{2, t}\right) e_{2}+\left(C_{3, t}\right) G+C_{1} h_{2} G-C_{3} h_{2} e_{1}
$$

Thus, $\nabla_{\partial_{t}} C=0$ implies

$$
\begin{align*}
C_{1, t} & =h_{2} C_{3} \tag{3.15a}\\
C_{2, t} & =0 \tag{3.15b}\\
C_{3, t} & =-h_{2} C_{1} \tag{3.15c}
\end{align*}
$$

Now, we assume towards a contradiction that M is not flat, i.e., the open subset $\mathcal{M}=\{p \in M \mid K(p) \neq 0\}$ of M is not empty. By multiplying both sides of (3.13c) by C_{2} and using (3.6) and (3.14), we obtain $K\left(4 w\left(C_{3}+1\right)-h_{1} C_{2}\right)=0$ from which we get

$$
4 w\left(C_{3}+1\right)=h_{1} C_{2}
$$

on \mathcal{M}. By taking derivative of this equation and using (3.9), (3.10), we obtain

$$
4\left(w^{2}+K\right)\left(C_{3}+1\right)-4 w h_{2} C_{1}=\left(\frac{h_{2, s}}{E}+w h_{1}\right) C_{2}
$$

on \mathcal{M}. Next, we multiply both sides of this equation by f and use (3.13a), (3.13c) and (3.14) to obtain $K\left(h_{2}^{2} h_{1} E+3 w \frac{\partial h_{2}}{\partial s}\right)=0$ from which we get

$$
\begin{equation*}
h_{2}^{2} h_{1} E+3 w \frac{\partial h_{2}}{\partial s}=0 \tag{3.16}
\end{equation*}
$$

on \mathcal{M}.
By using (3.3), (3.4), (3.7) and (3.8) in (3.16), we obtain

$$
\begin{equation*}
b^{3}\left(a^{\prime}-b c\right)+2 b^{2} b^{\prime}(a+t)+\left(-c b^{2}+6 a^{\prime} b\right)(a+t)^{2}-3 b^{\prime}(a+t)^{3}=0 \tag{3.17}
\end{equation*}
$$

on \mathcal{M}, from which, we obtain b is a constant and

$$
\begin{align*}
b\left(a^{\prime}-b c\right) & =0 \tag{3.18a}\\
b\left(6 a^{\prime}-b c\right) & =0 \tag{3.18b}
\end{align*}
$$

Note that if $b=0$, then (3.1) implies $\alpha^{\prime}=a \beta^{\prime}$ and from Theorem 3.1 we have \mathcal{M} is flat which yields a contradiction. Thus, we have $b \neq 0$.

From (3.18) we have $a^{\prime}=c=0$. Therefore, (3.6) and (3.7) imply that \mathcal{M} is minimal. However, Theorem 2.7 implies that \mathcal{M} is an open part of a plane which is contradiction since $K \neq 0$ on \mathcal{M}. Hence we have \mathcal{M} is an empty set, i. e., M is flat.

The converse is obvious.

3.3. Ruled surfaces with $\square G=A G$ for a matrix $A \in \mathbb{R}^{3 x 3}$

In this section, we suppose that M is a ruled surface whose Gauss map satisfies $\square G=A G$ for some matrix $A \in \mathbb{R}^{3 x 3}$ with real entities. From this equation and (2.6) we obtain

$$
-A G=e_{1}(K) e_{1}+e_{2}(K) e_{2}+2 K H G
$$

By taking covariant derivative of this equation on the direction e_{2} we have
$-\tilde{\nabla}_{e_{2}}(A G)=A S e_{2}=\left(e_{2} e_{1}(K)-2 K H h_{2}\right) e_{1}+e_{2} e_{2}(K) e_{2}+\left(h_{2} e_{1}(K)+2 e_{2}(K H)\right) G$ as $\nabla_{e_{2}} e_{1}=\nabla_{e_{2}} e_{2}=0$ and $h\left(e_{2}, e_{2}\right)=0$. From this equation we obtain

$$
\begin{equation*}
h_{2}\left\langle A e_{1}, e_{2}\right\rangle=K_{t t} . \tag{3.19}
\end{equation*}
$$

Note that, by using (3.9) and (3.12), one can obtain $K_{t t}=20 w^{2} K+4 K^{2}$. On the other hand, by using (3.2) we obtain

$$
\left\langle A e_{1}, e_{2}\right\rangle=\frac{1}{E}\left((a+t)\left\langle A \beta^{\prime}, \beta\right\rangle+b\left\langle A\left(\beta \wedge \beta^{\prime}\right), \beta\right\rangle\right) .
$$

From this equation and (3.19) we have

$$
\left\langle A \beta^{\prime}, \beta\right\rangle E^{5}(a+t)+b\left\langle A\left(\beta \wedge \beta^{\prime}\right), \beta\right\rangle E^{5}+20 b(a+t)-4 b^{3}=0
$$

which implies $b=0$, i. e., M is flat. Hence, we have
Theorem 3.3. The Gauss map G of a ruled surface in \mathbb{E}^{3} satisfies $\square G=A G$ for a matrix $A \in \mathbb{R}^{3 x 3}$ if and only if M is flat.

Combining Theorem 3.2 and Theorem 3.3, we obtain
Theorem 3.4. Let M be a non-cylindrical ruled surface whose position vector given by (2.5). Then, the following statements are equivalent:
(1) M has \square-pointwise 1-type Gauss map of the second kind.
(2) The Gauss map G of M satisfies $\square G=A G$ for a matrix $A \in \mathbb{R}^{3 x 3}$.
(3) M is flat.

4. Null scrolls in \mathbb{E}_{1}^{3}

A non-degenerate ruled surface M in \mathbb{E}_{1}^{3} given by (2.5) is called a null scroll if $\langle\beta, \beta\rangle=\left\langle\alpha^{\prime}, \alpha^{\prime}\right\rangle=0$ and $\left\langle\alpha^{\prime}, \beta\right\rangle \neq 0$. In this case, without loss of generality we may assume that $\left\langle\alpha^{\prime}, \beta\right\rangle=1$. Furthermore, we may choose an appropriate parameter s in such a way that $\left\langle\alpha^{\prime}, \beta^{\prime}\right\rangle=0$, which is possible if the base curve α is chosen as a null geodesic of M.

On the other hand, if $\left\langle\beta^{\prime}, \beta^{\prime}\right\rangle=0$ at an open subset \mathcal{M} of M, then there exists a function a such that $\beta^{\prime}=a \beta$ which implies $\beta=\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$ is $\beta=\beta_{1} c_{0}$ for a constant light-like vector $c_{0} \in \mathbb{E}_{1}^{3}$. Hence, we may assume $\beta=c_{0}$ which implies that \mathcal{M} is cylindirical. Therefore, we may locally assume $\left\langle\beta^{\prime}, \beta^{\prime}\right\rangle=E^{2}>0$.

The tangent vector fields $e_{1}=-\partial_{s}+\left(t^{2} E^{2} / 2\right) \partial_{t}$ and $e_{2}=\partial_{t}$ form a pseudoorthonormal frame field and the unit nomal vector field is $N=-E^{-1} \beta^{\prime}+t E \beta$. By a direct calculation, we obtain

$$
\begin{align*}
S e_{1}=-E e_{1}+b e_{2}, & S e_{2}=-E e_{2} \tag{4.1a}\\
\widetilde{\nabla}_{e_{1}} e_{2}=-t E^{2} e_{2}+E N, & \widetilde{\nabla}_{e_{2}} e_{2}=0 \tag{4.1b}
\end{align*}
$$

for a non-vanishing function b. From (4.1a) we have $H=E$ which implies

$$
\begin{equation*}
P_{1}=-2 E I-S \tag{4.2}
\end{equation*}
$$

4.1. Gauss map of null scrolls

In the next lemma, we obtain $\square G$ for a null scroll in \mathbb{E}_{1}^{3}.
Lemma 4.1. Let M be a null scroll in \mathbb{E}_{1}^{3}. Then, the Gauss map G of M satisfies

$$
\begin{equation*}
\square G=-2 E E^{\prime} e_{2}+2 E^{3} G \tag{4.3}
\end{equation*}
$$

Proof. Let C be a constant vector in \mathbb{E}_{1}^{3}. By a direct computation, we obtain

$$
\nabla\langle G, C\rangle=-E\left\langle e_{2}, C\right\rangle e_{1}-E\left\langle e_{1}, C\right\rangle e_{2}+b\left\langle e_{2}, C\right\rangle e_{2}
$$

By considering (4.2), we get

$$
P_{1}(\nabla\langle G, C\rangle)=E^{2}\left\langle e_{2}, C\right\rangle e_{1}+E^{2}\left\langle e_{1}, C\right\rangle e_{2}
$$

By using this equation and (2.5), we obtain

$$
\begin{align*}
\langle\square G, C\rangle & =-\left\langle\nabla_{e_{1}}\left(E^{2}\left\langle e_{2}, C\right\rangle e_{1}+E^{2}\left\langle e_{1}, C\right\rangle e_{2}\right), e_{2}\right\rangle \\
& -\left\langle\nabla_{e_{2}}\left(E^{2}\left\langle e_{2}, C\right\rangle e_{1}+E^{2} E^{2}\left\langle e_{1}, C\right\rangle e_{2}\right), e_{1}\right\rangle \tag{4.4}\\
& =e_{1}\left(E^{2}\right)\left\langle e_{2}, C\right\rangle+e_{2}\left(E^{2}\right)\left\langle e_{1}, C\right\rangle+2 E^{2}\left\langle h\left(e_{1}, e_{2}\right), C\right\rangle \\
& =\left\langle-2 E E^{\prime} e_{2}+2 E^{3} G, C\right\rangle .
\end{align*}
$$

Thus, we have (4.3).
Example 1. If $\alpha(s)$ is a null curve in \mathbb{E}_{1}^{3} with the Cartan frame $\{A, B, C\}$ such that $\langle A, A\rangle=\langle B, B\rangle=0,\langle A, B\rangle=-1,\langle A, C\rangle=\langle B, C\rangle=0$ and $\langle C, C\rangle=1$ with $\alpha^{\prime}=A, A^{\prime}=k_{1}(s) C$ and $B^{\prime}=k_{2} C$ for a constant k_{2} and a smooth function k_{1} and $\beta(s)=B(s)$, then the null scroll given by (2.5) is said to be a B-scroll. It is well-known that a null scroll M is a B-scroll if and only if E is a constant (see [19]). In this case, the Gauss map of M satisfies

$$
\square G=2 E^{3} G
$$

because of (4.3) which implies M has \square-1-type Gauss map of the first kind.
Next, we want to give classification of null scrolls in \mathbb{E}_{1}^{3} with \square-pointwise 1-type Gauss map.

Proposition 4.2. A null scroll in \mathbb{E}_{1}^{3} has \square-pointwise 1-type Gauss map if and only if it is a B-scroll.

Proof. Let M be a null scroll in \mathbb{E}_{1}^{3} with \square-pointwise 1-type Gauss map. Then, the Gauss map G of M satisfies

$$
\begin{equation*}
-2 E E^{\prime} e_{2}+2 E^{3} G=f(G+C) \tag{4.5}
\end{equation*}
$$

for a constant vector C and a smooth function f. From (4.5) we have

$$
\begin{equation*}
f\left\langle C, e_{2}\right\rangle=0 \tag{4.6}
\end{equation*}
$$

Now, we consider the open subset $\mathcal{M}=\{p \in M \mid f(p) \neq 0\}$ of M on which $\left\langle C, e_{2}\right\rangle=0$ is satisfied. From this equation we get

$$
\begin{equation*}
e_{1}\left(\left\langle e_{2}, C\right\rangle\right)=0 \tag{4.7}
\end{equation*}
$$

on \mathcal{M}. By a further calculation taking into account of Gauss formula (2.1), (4.6) and (4.7), we obtain

$$
\begin{equation*}
\langle G, C\rangle=0 \tag{4.8}
\end{equation*}
$$

By combining (4.6) and (4.8), we obtain $C=C_{1} e_{2}=C_{1} \beta$. From which we get $C=0$. Thus, (4.5) implies E is constant. Hence M is a B-scroll.

The converse is given in Example 1.
Now, we obtain the following proposition.
Proposition 4.3. Let M be a null scroll in \mathbb{E}_{1}^{3}. Then, its Gauss map satisfies $\square G=A G$ for a constant 3×3-matrix A if and only if M is a B-scroll.
Proof. Suppose the the Gauss map G of M satisfies $\square G=A G$ for a constant 3×3-matrix A. Then, we have

$$
\begin{equation*}
-2 E E^{\prime} e_{2}+2 E^{3} G=A G \tag{4.9}
\end{equation*}
$$

from which, we get

$$
-2 E E^{\prime} \widetilde{\nabla}_{e_{2}} e_{2}+2 E^{3} \widetilde{\nabla}_{e_{2}} G=A\left(\widetilde{\nabla}_{e_{2}} G\right)
$$

By using (4.1), we obtain

$$
\begin{equation*}
A e_{2}=2 E^{3} e_{2} \tag{4.10}
\end{equation*}
$$

from which we get $A\left(\widetilde{\nabla}_{e_{1}} e_{2}\right)=2 E^{3} \widetilde{\nabla}_{e_{1}} e_{2}$. From this equation and (4.1b) we obtain

$$
-t E^{2} A e_{2}+E A G=E^{3}\left(-t E^{2} e_{2}+E G\right)
$$

By combining this equation with (4.9) and (4.10), we obtain $E E^{\prime}=0$ which implies E is constant. Hence, M is a B-scroll.

The converse is given in Example 1.
By combining Proposition 4.2 and Proposition 4.3 with the result of [1], we obtain the following theorem.
Theorem 4.4. Let M be a null scroll in \mathbb{E}_{1}^{3}. Then the following conditions are equivalent.
(i) M has \square-pointwise 1-type Gauss map.
(ii) The Gauss map G of M satisfies $\Delta G=A G$ for a constant 3×3-matrix A.
(iii) The Gauss map G of M satisfies $\square G=A G$ for a constant 3×3-matrix A.
(iv) M is a B-scroll.

Acknowledgements. This work was done while the second named author was visiting Kyungpook National University, Korea between February and August in 2012.

References

[1] L. J. Alías, A. Ferrández, P. Lucas and M. A. Meroño, On the Gauss map of B-scrolls, Tsukuba J. Math., 22(1998), 371-377.
[2] L. J. Alías and N. Gürbüz, An extension of Takashi theorem for the linearized operators of the highest order mean curvatures, Geom. Dedicata, 121(2006), 113-127.
[3] B. Y. Chen, Total Mean Curvature and Submanifold of Finite Type, World Scientific, 1984.
[4] B. Y. Chen, A report on submanifolds of finite type, Soochow J. Math., 22(1996), 117-337.
[5] B. Y. Chen, M. Choi and Y. H. Kim, Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc., 42 (2005), 447-455.
[6] B. Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, Ruled surfaces of finite type., Bull. Austral. Math. Soc., 42(1990), 447-453
[7] B. Y. Chen, J. M. Morvan and T. Nore, Energy, tension and finite type maps, Kodai Math. J., 9(1986), 406-418.
[8] B. Y. Chen and P. Piccinni, Submanifolds with finite type Gauss Map, Bull. Austral. Math. Soc., 35(1987), 161-186.
[9] S. Y. Cheng and S. T. Yau, Hypersurfaces with constant scalar curvature., Math. Ann., 225(1977), 195-204.
[10] M. Choi, D. -S. Kim and Y. H. Kim, Helicoidal surfaces with pointwise 1-type Gauss map, J. Korean Math. Soc., 46(2009), pp. 215-223.
[11] M. Choi and Y. H. Kim, Characterization of helicoid as ruled surface with pointwise 1-type Gauss map, Bull. Korean Math. Soc., 38(2001), 753-761.
[12] U. Dursun and N. C. Turgay, General rotational surfaces in Euclidean space \mathbb{E}^{4} with pointwise 1-type Gauss map, Math. Commun., Math. Commun. 17(2012), 71-81.
[13] W. Greub, Linear Algebra, Springer, New York, 1963.
[14] U-H. Ki, D.-S. Kim, Y. H. Kim and Y. M. Roh, Surfaces of revolution with pointwise 1-type Gauss map in Minkowski 3-space, Taiwanese J. Math., 13(2009), 317-338.
[15] Y. H. Kim and N. C. Turgay, Surfaces in \mathbb{E}^{3} with L 1 -pointwise 1-type Gauss map, Bull. Korean Math. Soc., 50(2013), 935-949.
[16] Y. H. Kim and D. W. Yoon, Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys., 34(2000), 191-205.
[17] Y. H. Kim and D. W. Yoon, Classification of rotation surfaces in pseudo-Euclidean space, J. Korean Math., 41(2004), 379-396.
[18] Y. H. Kim and D. W. Yoon, On the Gauss map of ruled surfaces in Minkowski space, Rocky Mount. J. Math., 35(2005), 1555-1581.
[19] M. A. Magid, Lorentzian isoparametric hypersurfaces, Pacific J. Math., 118(1985), 165-197.
[20] N. C. Turgay, On the marginally trapped surfaces in 4-dimensional space-times with finite type Gauss map, Gen. Relativ. Gravit., (2014) 46:1621.
[21] D. W. Yoon, Rotation surfaces with finite type Gauss map in E^{4}, Indian J. Pure. Appl. Math., 32(2001), 1803-1808.

