Browse > Article
http://dx.doi.org/10.5666/KMJ.2017.57.1.133

On the Ruled Surfaces with L1-Pointwise 1-Type Gauss Map  

Kim, Young Ho (Department of Mathematics, Kyungpook National University)
Turgay, Nurettin Cenk (Department of Mathematics, Istanbul Technical University)
Publication Information
Kyungpook Mathematical Journal / v.57, no.1, 2017 , pp. 133-144 More about this Journal
Abstract
In this paper, we study ruled surfaces in 3-dimensional Euclidean and Minkowski space in terms of their Gauss map. We obtain classification theorems for these type of surfaces whose Gauss map G satisfying ${\Box}G=f(G+C)$ for a constant vector $C{\in}{\mathbb{E}}^3$ and a smooth function f, where ${\Box}$ denotes the Cheng-Yau operator.
Keywords
Cheng-Yau operator; Gauss map; null scroll; pointwise 1-type; ruled surface;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 L. J. Alias, A. Ferrandez, P. Lucas and M. A. Merono, On the Gauss map of B-scrolls, Tsukuba J. Math., 22(1998), 371-377.   DOI
2 L. J. Alias and N. Gurbuz, An extension of Takashi theorem for the linearized operators of the highest order mean curvatures, Geom. Dedicata, 121(2006), 113-127.
3 B. Y. Chen, Total Mean Curvature and Submanifold of Finite Type, World Scientific, 1984.
4 B. Y. Chen, A report on submanifolds of finite type, Soochow J. Math., 22(1996), 117-337.
5 B. Y. Chen, M. Choi and Y. H. Kim, Surfaces of revolution with pointwise 1-type Gauss map, J. Korean Math. Soc., 42(2005), 447-455.   DOI
6 B. Y. Chen, F. Dillen, L. Verstraelen and L. Vrancken, Ruled surfaces of finite type., Bull. Austral. Math. Soc., 42(1990), 447-453   DOI
7 B. Y. Chen, J. M. Morvan and T. Nore, Energy, tension and finite type maps, Kodai Math. J., 9(1986), 406-418.   DOI
8 B. Y. Chen and P. Piccinni, Submanifolds with finite type Gauss Map, Bull. Austral. Math. Soc., 35(1987), 161-186.   DOI
9 S. Y. Cheng and S. T. Yau, Hypersurfaces with constant scalar curvature., Math. Ann., 225(1977), 195-204.   DOI
10 M. Choi, D. -S. Kim and Y. H. Kim, Helicoidal surfaces with pointwise 1-type Gauss map, J. Korean Math. Soc., 46(2009), pp. 215-223.   DOI
11 M. Choi and Y. H. Kim, Characterization of helicoid as ruled surface with pointwise 1-type Gauss map, Bull. Korean Math. Soc., 38(2001), 753-761.
12 U. Dursun and N. C. Turgay, General rotational surfaces in Euclidean space ${\mathbb{E}}^4$ with pointwise 1-type Gauss map, Math. Commun., Math. Commun. 17(2012), 71-81.
13 W. Greub, Linear Algebra, Springer, New York, 1963.
14 U-H. Ki, D.-S. Kim, Y. H. Kim and Y. M. Roh, Surfaces of revolution with pointwise 1-type Gauss map in Minkowski 3-space, Taiwanese J. Math., 13(2009), 317-338.   DOI
15 Y. H. Kim and N. C. Turgay, Surfaces in ${\mathbb{E}}^3$ with $L_1$-pointwise 1-type Gauss map, Bull. Korean Math. Soc., 50(2013), 935-949.   DOI
16 Y. H. Kim and D. W. Yoon, Ruled surfaces with pointwise 1-type Gauss map, J. Geom. Phys., 34(2000), 191-205.   DOI
17 Y. H. Kim and D. W. Yoon, Classification of rotation surfaces in pseudo-Euclidean space, J. Korean Math., 41(2004), 379-396.   DOI
18 Y. H. Kim and D. W. Yoon, On the Gauss map of ruled surfaces in Minkowski space, Rocky Mount. J. Math., 35(2005), 1555-1581.   DOI
19 M. A. Magid, Lorentzian isoparametric hypersurfaces, Pacific J. Math., 118(1985), 165-197.   DOI
20 N. C. Turgay, On the marginally trapped surfaces in 4-dimensional space-times with finite type Gauss map, Gen. Relativ. Gravit., (2014) 46:1621.   DOI
21 D. W. Yoon, Rotation surfaces with finite type Gauss map in $E^4$, Indian J. Pure. Appl. Math., 32(2001), 1803-1808.