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ON THE GAUSS MAP OF HELICOIDAL SURFACES

Dong-Soo Kim, Wonyong Kim, and Young Ho Kim

Abstract. We study the Gauss map G of helicoidal surfaces in the 3-
dimensional Euclidean space E

3 with respect to the so called Cheng-Yau
operator � acting on the functions defined on the surfaces. As a result, we
completely classify the helicoidal surfaces with Gauss map G satisfying
�G = AG for some 3× 3 matrix A.

1. Introduction

We consider a surface M of the Euclidean 3-space E3. The map G : M → S2

which sends each point of M to the unit normal vector to M at the point is
called the Gauss map of the surface M , where S2 is the unit sphere in E

3

centered at the origin. The theory of Gauss map of a surface in a Euclidean
space and a pseudo-Euclidean space is always one of interesting topics and it has
been investigated from the various viewpoints by many differential geometers
([8, 9, 10, 11, 14, 16, 17, 18, 21, 23]).

It is well known that a surface M in the Euclidean 3-space E
3 has constant

mean curvature if and only if ∆G = ||dG||2G, where ∆ is the Laplace operator
on M corresponding to the induced metric on M from E

3 ([25]). Surfaces
whose Gauss map is an eigenfunction of Laplacian, that is, ∆G = λG for some
constant λ ∈ R, are the planes, circular cylinders and spheres ([6]).

Generalizing the equation ∆G = λG, F. Dillen et al. ([12]) and C. Baikoussis
et al. ([2]), respectively, studied surfaces of revolution and ruled surfaces in the
Euclidean 3-space E

3 such that its Gauss map G satisfies the condition

(1.1) ∆G = AG, A ∈ R3×3.

As a result, they proved ([2, 12]):
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Proposition 1.1. 1) Among the surfaces of revolution in E
3, the only ones

whose Gauss map satisfies (1.1) are the planes, the spheres and the circular

cylinders.

2) Among the ruled surfaces in E
3, the only ones whose Gauss map satisfies

(1.1) are the planes and the circular cylinders.

A natural generalization of rotation surfaces are the helicoidal surfaces ([13]).
For helicoidal surfaces C. Baikoussis et al. proved ([4]):

Proposition 1.2. Let M be a helicoidal surface in E
3. Then the Gauss map G

of M satisfies (1.1) if and only if it is an open part of either a plane, a sphere

or a circular cylinder.

A natural extension of the Laplace operator ∆ is the so-called Cheng-Yau op-
erator � (or, L1) introduced by Cheng and Yau ([7]) for the study of hypersur-
faces with constant scalar curvature. For an isometric immersion X : M → R

3

of a surface M , Aĺıas et al. established the following classification theorem ([1]).

Proposition 1.3. The only surfaces in E
3, which satisfy the condition �X =

AX+b for some constant 3×3 matrix A and some constant vector b are either

flat or an open part of a sphere.

In fact, they classified hypersurfaces in the Euclidean space En satisfying the
condition �X = AX + b for some constant n× n matrix A and some constant
vector b ([1]), which extends the classification theorem for hypersurfaces in E

n

satisfying ∆X = AX + b given by Chen and Petrovic ([5]) and Hasanis and
Vlachos ([15]).

Hence, following the condition (1.1), it is natural to ask as follows.

Question 1.4. Among helicoidal surfaces in the Euclidean 3-space E
3, which

one satisfies the following condition?

(1.2) �G = AG, A ∈ R3×3.

In this paper, we give a complete answer to the above question.
For surfaces of revolution whose Gauss map satisfies (1.2), we refer to [19].
The notion of generalized slant cylindrical surfaces (GSCS’s) is also a natural

extended one of surfaces of revolution ([20]). Surfaces of revolution, cylindrical
surfaces and tubes along a plane curve are special cases of GSCS’s. In [22], the
first author and B. Song proved that among the GSCS’s in E

3, the only ones
whose Gauss map satisfies (1.1) are the planes, the spheres and the circular
cylinders.

Throughout this paper, we assume that all objects are smooth and con-
nected, unless otherwise mentioned.

2. Preliminaries

A natural generalization of rotation surfaces are the helicoidal surfaces that
can be defined as follows. Let R3 have coordinates (x, y, z). Consider the one-
parameter subgroup gt : R

3 → R
3 of the group of rigid motions of R3 given by
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gt : R
3 → R

3, gt(x, y, z) = (x cos t− y sin t, x sin t+ y cos t, z + ht). The motion
gt is called a helicoidal motion with axis Oz and pitch h. A helicoidal surface
with axis Oz and pitch h is a surface that is invariant by gt, for all t. When
h = 0, they reduce to rotation surfaces.

For a surface M in E
3 with Gauss map G, we denote by S the shape operator

of M with respect to the Gauss map G. For each k = 0, 1, we put P0 = I, P1 =
tr(S)I−S, where I is the identity operator acting on the tangent bundle of M .
Let us define an operator Lk : C∞(M) → C∞(M) by Lk(f) = −tr(Pk ◦ ∇2f),
where ∇2f : χ(M) → χ(M) denotes the self-adjoint linear operator metrically
equivalent to the hessian of f . Then, up to signature, Lk is the linearized
operator of the first variation of the (k + 1)-th mean curvature arising from
normal variations of the surface. Note that the operator L0 is nothing but
the Laplace operator acting on M , i.e., L0 = ∆ and L1 = � is called the
Cheng-Yau operator introduced in [7].

Now, we state a useful lemma as follows ([1]).

Lemma 2.1. Let M be an oriented surface in E
3 with Gaussian curvature K

and mean curvature H. Then, the Gauss map G of M satisfies

(2.1) �G = ∇K + 2HKG,

where ∇K denotes the gradient of K.

Next, we need the well-known classification theorem for isoparametric sur-
faces in E

3, which are surfaces with constant principal curvatures.

Proposition 2.2 ([24]). Let M be an isoparametric surface in E
3. Then M is

an open part of either a plane, a sphere or a circular cylinder.

Finally in this section, using Lemma 2.1 we give some examples of surfaces
with Gauss map satisfying (1.2).

Example 2.3. (1) Flat surfaces. In this case, we have �G = 0, and hence flat
surfaces satisfy �G = AG for some 3 × 3 matrix A. Note that the matrix A

must be singular.
(2) Spheres: (x − a)2 + (y − b)2 + (z − c)2 = r2. In this case, we have

G = 1
r
(x − a, y − b, z − c) so the sphere satisfies �G = AG with A = − 2

r3
I,

where I denotes the identity matrix.
(3) Circular cylinders: x2 + y2 = r2. In this case, we have G = 1

r
(x, y, 0).

Hence, the surface M satisfies �G = AG for some nonzero matrix A of the
following form:

A =





0 0 ∗
0 0 ∗
0 0 ∗



 .

3. Gauss map of helicoidal surfaces

We consider a regular plane curve α(s) = (x(s), 0, z(s)) with x(s) > 0 in the
xz plane which is defined on an interval I. A surface M in the Euclidean space
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E
3 defined by

(3.1) X(s, t) = (x(s) cos t, x(s) sin t, z(s) + ht),

where h is a constant, is said to be the helicoidal surface with axis Oz, pitch
h and profile curve α. If h = 0, then a helicoidal surface is just a surface of
revolution. If h 6= 0, we call M a genuine helicoidal surface. For the helicoidal
rigid motion gt : R

3 → R
3 given by gt(x, y, z) = (x cos t − y sin t, x sin t +

y cos t, z + ht), t ∈ R, the helicoidal surface (3.1) is invariant under gt for all t.
We assume that the profile curve α(s) = (x(s), 0, z(s)) is of unit speed with

x(s) > 0. The adapted frame field {e1, e2, G} on the helicoidal surface M are
given by

(3.2)

e1 = Xs = (x′ cos t, x′ sin t, z′),

e2 =
1

Q
{−hz′Xs +Xt},

G = e1 × e2 =
1

Q
(−xz′ cos t+ hx′ sin t,−hx′ cos t− xz′ sin t, xx′),

whereXs andXt denote the derivative ofX with respect to s and t, respectively
and ′ means the derivative with respect to s. We put

(3.3) Q = Q(s) = {x2 + h2(x′)2}1/2.

The metric (gij) and the second fundamental form (hij) on the helicoidal sur-
face M are, respectively, given by

(3.4) g11 = 1, g12 = g21 = hz′, g22 = x2 + h2

and

(3.5) h11 =
xκ

Q
, h12 = h21 = −

(x′)2h

Q
, h22 =

x2z′

Q
,

where κ = κ(s) denotes the curvature function of the curve α.
It follows from (3.4) and (3.5) that the Gaussian curvature K and the mean

curvature H of M are given by

(3.6)

K =
det(hij)

det(gij)
=

x3z′κ− h2(x′)4

Q4
,

2H =
g11h22 + g22h11 − 2g12h12

det(gij)

=
κx(x2 + h2) + x2z′ + 2h2(x′)2z′

Q3
.

Note that both of the curvature functions K and H depend only on the pa-
rameter s. Using (3.2), ∇K can be computed as follows:

(3.7) ∇K = e1(K)e1 + e2(K)e2 = PXs +RXt,
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where we put

(3.8) P = P (s) =
x2 + h2

Q2
K ′(s), R = R(s) = −

hz′

Q2
K ′(s).

Now, we suppose that the Gauss map G on the helicoidal surface M satisfies
�G = AG for some matrix A = (aij). Then, it follows from Lemma 2.1 and
(3.7) that

(3.9) PXs +RXt + 2HKG = AG.

Putting Xs, Xt = (−x sin t, x cos t, h) and G in (3.2) into the equation (3.9),
we get the following:

(3.10)
QPx′ cos t−QRx sin t+ 2HK(hx′ sin t− xz′ cos t)

= a11(hx
′ sin t− xz′ cos t) + a12(−hx′ cos t− xz′ sin t) + a13xx

′,

(3.11)
QPx′ sin t+QRx cos t+ 2HK(−hx′ cos t− xz′ sin t)

= a21(hx
′ sin t− xz′ cos t) + a22(−hx′ cos t− xz′ sin t) + a23xx

′

and

(3.12)
QPz′ +QRh+ 2HKxx′

= a31(hx
′ sin t− xz′ cos t) + a32(−hx′ cos t− xz′ sin t) + a33xx

′.

Since cos t, sin t and 1 are linearly independent and their coefficients in (3.10)
depend only on the parameter s, we get from (3.10)

(3.13) QPx′ − 2HKxz′ = −a11xz
′ − a12hx

′,

(3.14) −QRx+ 2HKhx′ = a11hx
′ − a12xz

′

and

(3.15) a13xx
′ = 0.

Similarly, we obtain from (3.11)

(3.16) QRx− 2HKhx′ = −a21xz
′ − a22hx

′,

(3.17) QPx′ − 2HKxz′ = a21hx
′ − a22xz

′

and

(3.18) a23xx
′ = 0.

From (3.12), we also get the following:

(3.19) a31hx
′ − a32xz

′ = 0,

(3.20) −a31xz
′ − a32hx

′ = 0

and

(3.21) QPz′ +QRh+ 2HKxx′ = a33xx
′.
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It follows from (3.13) and (3.17) that

(3.22) (a12 + a21)hx
′ = (a22 − a11)xz

′.

From (3.14) and (3.16) we also get

(3.23) (a12 + a21)xz
′ = −(a22 − a11)hx

′.

Combining (3.22) and (3.23), we have

(3.24) {(a12 + a21)
2 + (a22 − a11)

2}hxx′z′ = 0.

Let us put J = {s ∈ I |x′(s)z′(s) 6= 0}. We divide by two cases as follows.
Case 1. J is empty. In this case, x′(s)z′(s) identically vanishes on the domain
I of s. If x(s) is a constant r, then X(s, t) is nothing but a parametrization of
the circular cylinder M given by x2 + y2 = r2, which is flat.

If z(s) is a constant, then we may assume x(s) = s + c, and hence M is a
helicoid. In this case, from (3.3), (3.6) and (3.8) we have

(3.25) Q = {(s+ c)2 + h2}1/2,K = −
h2

Q4
, H = 0, P = K ′(s), R = 0.

Hence, it follows from (3.17) that

(3.26) QP = a21h,

which contradicts to the equations in (3.25). Therefore, this case cannot occur.
Case 2. Suppose that the subinterval J is nonempty. Then, from (3.15), (3.18)
and (3.24) we see that the matrix A is of the following form:

A =





λ µ 0
−µ λ 0
0 0 ν



 .

Hence, (3.14) and (3.21), respectively, reduce to

(3.27) −QRx+ 2HKhx′ = λhx′ − µxz′

and

(3.28) QPz′ +QRh+ 2HKxx′ = νxx′.

On the other hands, (3.8) shows that

(3.29) QPz′ +QRh =
x2z′

Q
K ′(s) = −

x2

h
QR.

Hence, (3.28) becomes

(3.30) −QRx+ 2HKhx′ = νhx′.

Together with (3.27), this equation implies

(3.31) (λ− ν)hx′ = µxz′.

We divide by two subcases as follows.
Subcase 2-1. Suppose that λ = ν. In this case, µ = 0. Hence we have A = λI,
where I is the identity matrix. Thus, Lemma 2.1 yields that K is constant and
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2HK = λ. If the Gaussian curvature K is nonzero, then the mean curvature
H is also constant. Hence, Proposition 2.2 implies that M is an open part
of a sphere, which leads to a contradiction. Thus, the Gaussian curvature K

vanishes identically, that is, M is flat.
Subcase 2-2. Suppose that λ 6= ν. In this case, (3.31) shows that µ 6= 0
because J is not empty. It follows from (3.31) that

(3.32) z = a lnx+ b,

where a = (λ − ν)h/µ and b is a constant. Without loss of generality, we may
assume that b = 0.

Next, we claim the following.

Claim. Let M denote a helicoidal surface given by

X(s, t) = (s cos t, s sin t, a ln s+ ht).

Then, the Gauss map G of the surface M does not satisfy �G = AG for any
matrix A.

Proof. Note that the generating curve is not of unit speed. For simplicity, we
assume that a = 1. Then, just as in the above argument we proceed as follows.
The adapted frame field {e1, e2, G} on the helicoidal surface M are given by

(3.33)

e1 =
s

√
s2 + 1

Xs,

e2 =
1

Q
{

−h
√
s2 + 1

Xs +

√
s2 + 1

s
Xt},

G = e1 × e2 =
1

Q
(− cos t+ h sin t,−h cos t− sin t, s),

where we put

(3.34) Q = Q(s) = {s2 + h2 + 1}1/2.

The metric (gij) and the second fundamental form (hij) on the helicoidal sur-
face M are, respectively, given by

(3.35) g11 = 1 +
1

s2
, g12 = g21 =

h

s
, g22 = s2 + h2

and

(3.36) h11 =
−1

sQ
, h12 = h21 =

−h

Q
, h22 =

s

Q
.

It follows from (3.35) and (3.36) that the Gaussian curvature K and the
mean curvature H of M are, respectively, given by

(3.37) K =
−(h2 + 1)

Q4
, 2H =

(h2 + 1)

sQ3
.
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The gradient ∇K is also given by

(3.38)
∇K = e1(K)e1 + e2(K)e2

= PXs +RXt,

where we put

(3.39) P =
s2 + h2

Q2
K ′(s), R =

−h

sQ2
K ′(s).

Suppose that the Gauss map G of the surface M satisfies �G = AG for a
matrix A. Then the matrix A must be of the form in Case 2 and we get

(3.40) QP − 2HK = −λ− µh

and

(3.41) −QRs+ 2HKh = λh− µ.

Hence, combining (3.40) and (3.41) we obtain

(3.42) Q(Ph−Rs) = −µ(h2 + 1).

Since Ph−Rs = hK ′(s), (3.42) shows that

(3.43) K ′(s) =
−µ(h2 + 1)

Qh
,

which contradicts (3.37). This completes the proof of Claim. �

Finally, combining Cases 1 and 2 we get the following classification theorem.

Theorem 3.1. Let M be a genuine helicoidal surface in the Euclidean 3-space

E
3. Then the Gauss map G of M satisfies �G = AG for some 3× 3 matrix A

if and only if it is flat.

For flat helicoidal surfaces, we refer to [3].
For a genuine helicoidal surface M with Gauss map G satisfying �G = AG

for some nonzero 3× 3 matrix A, as a corollary we get the following.

Corollary 3.2. Let M be a genuine helicoidal surface in the Euclidean 3-space

E
3. Then the Gauss map G of M satisfies �G = AG for some nonzero 3 × 3

matrix A if and only if it is an open part of a circular cylinder.

Proof. Suppose that �G = AG for some nonzero 3 × 3 matrix A. Then, it
follows from Theorem 3.1 that the surface M is flat, hence we have AG =
�G = 0. If we denote by V the kernel space of the matrix A, the image of the
Gauss map G lies in the space V . Since A is nonzero, there exists a unit vector
a = (a1, a2, a3) which is orthogonal to V . It follows from (3.2) that

(3.44) a1(−xz′ cos t+ hx′ sin t) + a2(−hx′ cos t− xz′ sin t) + a3xx
′ = 0,

which shows that

(3.45) a1xz
′ + a2hx

′ = a1hx
′ − a2xz

′ = a3xx
′ = 0.
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The equations in (3.45) reduce to

(3.46) (a21 + a22)xz
′ = a3xx

′ = 0.

If J = {s ∈ I |x′(s)z′(s) 6= 0} is nonempty, then (3.46) implies that a = 0.
This contradiction shows that J is empty. Hence, it follows from Case 1 in the
proof of Theorem 3.1 that the surface M is an open part of a circular cylinder.

The converse follows from Example 2.3. �

With the help of the classification theorem for surfaces of revolution ([19]),
we obtain:

Theorem 3.3. Let M be a helicoidal surface in the Euclidean 3-space E
3.

Then we have the following.

1) The Gauss map G of M satisfies �G = AG for some 3 × 3 matrix A if

and only if it is either a flat surface or an open part of a sphere.

2) The Gauss map G of M satisfies �G = AG for some nonzero 3×3 matrix

A if and only if it is isoparametric, that is, an open part of either a plane, a

sphere or a circular cylinder.
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