• Title/Summary/Keyword: Chemical Tools

Search Result 334, Processing Time 0.021 seconds

A Study on the Effect of Automotive Engine Performance by Using Carbon Nano Colloid Cooling Water (탄소나노콜로이드 냉각수를 사용하여 자동차 엔진성능의 향상에 관한 연구)

  • Yi, Chung-Seob;Lee, Byung-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.5
    • /
    • pp.134-142
    • /
    • 2011
  • Although combustion is essential in most energy generation processes, it is one of the major causes of air pollution. Exhaust pipes with circular fin were designed to study the effect of cooling the recirculated exhaust gases (EGR) of Diesel engines on the chemical composition of the exhaust gases and the reduction in the percentages of pollutant emissions. The gases examined in this study were oxides of nitrogen (NOx), carbon dioxide ($CO_2$) and carbon monoxide (CO). In addition, $O_2$ concentration in the exhaust was measured. The designs adopted in this study were about exhaust pipes with solid and hollow fins around them direct surface force measurement in water using a nano size colloidal probe technique. The direct force measurement between colloidal surfaces has been an essential topic in both theories and applications of surface chemistry. As particle size is decreased from micron size down to true Carbon nano Colloid size (<10 nm), surface forces are increasingly important. Nano particles at close proximity or high solids loading are expected to show a different behavior than what can be estimated from continuum and mean field theories. The current tools for directly measuring interaction forces such as a surface force apparatus or atomic force microscopy (AFM) are limited to particles much larger than nano size. This paper use Water and CNC fluid at normal cooling system of EGR. Experimental result showed all good agreement at Re=$2.54{\times}10^4$ by free convection and Re=$3.36{\times}10^4$ by forced air furnace.

Impurity profiling and chemometric analysis of methamphetamine seizures in Korea

  • Shin, Dong Won;Ko, Beom Jun;Cheong, Jae Chul;Lee, Wonho;Kim, Suhkmann;Kim, Jin Young
    • Analytical Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.98-107
    • /
    • 2020
  • Methamphetamine (MA) is currently the most abused illicit drug in Korea. MA is produced by chemical synthesis, and the final target drug that is produced contains small amounts of the precursor chemicals, intermediates, and by-products. To identify and quantify these trace compounds in MA seizures, a practical and feasible approach for conducting chromatographic fingerprinting with a suite of traditional chemometric methods and recently introduced machine learning approaches was examined. This was achieved using gas chromatography (GC) coupled with a flame ionization detector (FID) and mass spectrometry (MS). Following appropriate examination of all the peaks in 71 samples, 166 impurities were selected as the characteristic components. Unsupervised (principal component analysis (PCA), hierarchical cluster analysis (HCA), and K-means clustering) and supervised (partial least squares-discriminant analysis (PLS-DA), orthogonal partial least squares-discriminant analysis (OPLS-DA), support vector machines (SVM), and deep neural network (DNN) with Keras) chemometric techniques were employed for classifying the 71 MA seizures. The results of the PCA, HCA, K-means clustering, PLS-DA, OPLS-DA, SVM, and DNN methods for quality evaluation were in good agreement. However, the tested MA seizures possessed distinct features, such as chirality, cutting agents, and boiling points. The study indicated that the established qualitative and semi-quantitative methods will be practical and useful analytical tools for characterizing trace compounds in illicit MA seizures. Moreover, they will provide a statistical basis for identifying the synthesis route, sources of supply, trafficking routes, and connections between seizures, which will support drug law enforcement agencies in their effort to eliminate organized MA crime.

Analysis of toxicity using bio-digital contents (바이오 디지털 콘텐츠를 이용한 독성의 분석)

  • Kang, Jin-Seok
    • Journal of Digital Contents Society
    • /
    • v.11 no.1
    • /
    • pp.99-104
    • /
    • 2010
  • Numerous bio-digital contents have been produced by new technology using biochip and others for analyzing early chemical-induced genes. These contents have little meaning by themselves, and so they should be modified and extracted after consideration of biological meaning. These include genomics, transcriptomics, protenomics, metabolomics, which combined into omics. Omics tools could be applied into toxicology, forming a new field of toxicogenomics. It is possible that approach of toxicogenomics can estimate toxicity more quickly and accurately by analyzing gene/protein/metabolite profiles. These approaches should help not only to discover highly sensitive and predictive biomarkers but also to understand molecular mechanism(s) of toxicity, based on the development of analysing technology. Furthermore, it is important that bio-digital contents should be obtained from specific cells having biological events more than from whole cells. Taken together, many bio-digital contents should be analyzed by careful calculating algorism under well-designed experimental protocols, network analysis using computational algorism and related profound databases.

Ln-resin and HIBA Method for La-Ce and Sm-Nd Isotope Measurement (La-Ce 및 Sm-Nd 동위원소계 측정을 위한 란탄-레진법과 HIBA(Hydroxy Isobutyric Acid)분리법의 상호비교)

  • Lee, Seung-Gu;Lee, Hyomin;Asahara, Yoshihiro;Lee, Mi-Jeong;Choo, MiKyeong;Lee, SeungRyeol
    • The Journal of the Petrological Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.431-439
    • /
    • 2012
  • A column chemistry is the most useful tools for isolating the elements of interest in isotope geochemistry. Here we introduce the chemical experimental procedure for Sm, Nd, La and Ce separation such as Teflon powder or Ln-resin method using HDEHP of KIGAM, KBSI, KOPRI and ${\alpha}$-HIBA(${\alpha}$-Hydroxy Isobutyric acid) method of Nagoya University, Japan. This technical report will provide an useful information in selecting the experiment method for rare earth element isotope system study such as Sm-Nd and La-Ce isotope system.

An Efficient Chloride Ingress Model for Long-Term Lifetime Assessment of Reinforced Concrete Structures Under Realistic Climate and Exposure Conditions

  • Nguyen, Phu Tho;Bastidas-Arteaga, Emilio;Amiri, Ouali;Soueidy, Charbel-Pierre El
    • International Journal of Concrete Structures and Materials
    • /
    • v.11 no.2
    • /
    • pp.199-213
    • /
    • 2017
  • Chloride penetration is among the main causes of corrosion initiation in reinforced concrete (RC) structures producing premature degradations. Weather and exposure conditions directly affect chloride ingress mechanisms and therefore the operational service life and safety of RC structures. Consequently, comprehensive chloride ingress models are useful tools to estimate corrosion initiation risks and minimize maintenance costs for RC structures placed under chloride-contaminated environments. This paper first presents a coupled thermo-hydro-chemical model for predicting chloride penetration into concrete that accounts for realistic weather conditions. This complete numerical model takes into account multiple factors affecting chloride ingress such as diffusion, convection, chloride binding, ionic interaction, and concrete aging. Since the complete model could be computationally expensive for long-term assessment, this study also proposes model simplifications in order to reduce the computational cost. Long-term chloride assessments of complete and reduced models are compared for three locations in France (Brest, Strasbourg and Nice) characterized by different weather and exposure conditions (tidal zone, de-icing salts and salt spray). The comparative study indicates that the reduced model is computationally efficient and accurate for long-term chloride ingress modeling in comparison to the complete one. Given that long-term assessment requires larger climate databases, this research also studies how climate models may affect chloride ingress assessment. The results indicate that the selection of climate models as well as the considered training periods introduce significant errors for mid- and long- term chloride ingress assessment.

Sequence Analysis of Hypothetical Proteins from Helicobacter pylori 26695 to Identify Potential Virulence Factors

  • Naqvi, Ahmad Abu Turab;Anjum, Farah;Khan, Faez Iqbal;Islam, Asimul;Ahmad, Faizan;Hassan, Md. Imtaiyaz
    • Genomics & Informatics
    • /
    • v.14 no.3
    • /
    • pp.125-135
    • /
    • 2016
  • Helicobacter pylori is a Gram-negative bacteria that is responsible for gastritis in human. Its spiral flagellated body helps in locomotion and colonization in the host environment. It is capable of living in the highly acidic environment of the stomach with the help of acid adaptive genes. The genome of H. pylori 26695 strain contains 1,555 coding genes that encode 1,445 proteins. Out of these, 340 proteins are characterized as hypothetical proteins (HP). This study involves extensive analysis of the HPs using an established pipeline which comprises various bioinformatics tools and databases to find out probable functions of the HPs and identification of virulence factors. After extensive analysis of all the 340 HPs, we found that 104 HPs are showing characteristic similarities with the proteins with known functions. Thus, on the basis of such similarities, we assigned probable functions to 104 HPs with high confidence and precision. All the predicted HPs contain representative members of diverse functional classes of proteins such as enzymes, transporters, binding proteins, regulatory proteins, proteins involved in cellular processes and other proteins with miscellaneous functions. Therefore, we classified 104 HPs into aforementioned functional groups. During the virulence factors analysis of the HPs, we found 11 HPs are showing significant virulence. The identification of virulence proteins with the help their predicted functions may pave the way for drug target estimation and development of effective drug to counter the activity of that protein.

Thermo-oxidation behaviour of organic matrix composite materials at high temperatures

  • Cinquin, Jacques;Colin, Xavier;Fayolle, Bruno;Mille, Marion;Terekhina, Svetlana;Chocinski-Arnault, Laurence;Gigliotti, Marco;Grandidier, Jean-Claude;Lafarie-Frenot, Marie-Christine;Minervino, Matteo;Cluzel, Christophe;Daghia, Federica;Ladeveze, Pierre;Zhang, Fangzouh
    • Advances in aircraft and spacecraft science
    • /
    • v.3 no.2
    • /
    • pp.171-195
    • /
    • 2016
  • The present paper is a review of the main activities carried out within the context of the COMPTINN' program, a joint research project founded by a FUI program (Fonds $Unifi{\acute{e}}s$ $Interminist{\acute{e}}riels$) in which four research teams focused on the thermo-oxidation behaviour of HTS-TACTIX carbon-epoxy composite at 'high' temperatures ($120^{\circ}C-180^{\circ}C$). The scientific aim of the COMPTINN' program was to better identify, with a multi-scale approach, the link between the physico-chemical mechanisms involved in thermo-oxidation phenomena, and to provide theoretical and numerical tools for predicting the mechanical behaviour of aged composite materials including damage onset and development.

Phytoremediation of Heavy Metal Contaminated Soils Using Transgenic Plants (중금속 오염토양의 식물정화 기술과 형질전환 식물의 이용에 관한 최근 연구동향)

  • Ok, Yong-Sik;Kim, Jeong-Gyu;Yang, Jae E.;Kim, Hee-Joung;Yoo, Kyung-Yoal;Park, Chang-Jin;Jeong, Deok-Yeong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.37 no.6
    • /
    • pp.396-406
    • /
    • 2004
  • Current physical and chemical methodologies, conventionally used to clean up metal contaminated soils, are generally too expensive to apply in large hazardous waste sites including agricultural lands adjacent to closed or abandoned metal mines. Phytoremediation using plants to extract, sequester and detoxify environmental pollutants is one of the cost-effective and aesthetically-pleasing alternatives, compared with environmentally destructive remedial methods currently being practiced. But, phytoremediation has some limitations such as time consuming and low performance: in general, it is seasonally dependent and slower in removing metals than other methods, and metal accumulating plants are slow growers. Improvement of plants for metal tolerance, accumulation, and translocation using genetic engineering techniques recently opened up new possibilities for phytoremediation. In this paper, we have discussed about recent developments in conventional and genetically engineered phytoremediation. For the conventional phytoremediation, focuses are on the natural hyperaccumulator and the chemically assisted phytoremediation. Some pros and cons on the phytoremediation using transgenic plants, coupled with focusing on the mechanistic view points, are also discussed. It might be concluded that the transgenic plants will be effective tools in the practical application of phytoremediation especially for the highly contaminated soils but mechanisms involved should be deeply understood in advance.

Simultaneous determination of ampicillin sodium and sulbactam sodium in powder for injection by HPLC

  • Mai, Xuan-Lan;Pham, Thuy-Vy;Han, Ga-Hyun;Kum, Su-Jin;Woo, Sang-Hoon;Kang, Jong-Seong;Woo, Mi Hee;Na, Dong-Hee;Chun, In-Koo;Kim, Kyeong Ho
    • Analytical Science and Technology
    • /
    • v.32 no.4
    • /
    • pp.147-154
    • /
    • 2019
  • Ampicillin and Sulbactam (2:1, w/w) are combined in formulation to provide broader antibacterial action in treatment of many infections. The development of analytical method for simultaneouly determine these two compounds was difficult because of the differences in their chemical structures and ratio in the formulation. Current published methods still have some limitations. In this study, we developed an alternative high-performance liquid chromatography (HPLC) assay method for simultaneously determination of ampicillin sodium and sulbactam sodium in powder for injection. Method validation of HPLC method was conducted to determine linearity, precision, accuracy, system suitability, robustness. The linearity of the calibration curves in the desired concentration range was good ($r^2$> 0.9994). RSDs of intra-day and inter-day precision obtained were less than 2.00 %. Accuracy was obtained with the recoveries in range of 98.42 % and 101.36 %. As a result of system suitability, RSD of both retention time and the peak area obtained were not more than 1.0 %. The values of plate number were more than 7000 and symmetric factors obtained were 0.8. As intermediate-precision and robustness of the developed assay, it could be expected to become valuable tools for revising the Korean Pharmacopoeia (KP XI).

Hair Protection Effect by Adding Mask Pack Active Ingredients to the End Paper During Permanent Wave Treatment (퍼머넌트 웨이브 시술시 엔드 페이퍼에 마스크팩 유효성분 첨가에 따른 모발 보호효과)

  • Lee, Bo-Lim;Ko, Kyoung-Sook
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.11
    • /
    • pp.288-295
    • /
    • 2021
  • This study was conducted to investigate the effect of end paper adsorbed with mask pack active ingredients on hair during permanent wave treatment. Permanent wave was performed with purchasing mask packs containing green tangerine, collagen, and Houttuynia cordate active ingredients among commercially available mask packs and adsorbing them to the end paper. As experimental methods, hair thickness, hair moisturizing power, tensile strength, hair epidermis observation using SEM, and hair constituent element analysis using EDS were performed. As a result of the experiment, it was confirmed that the experimental group treated with Houttuynia cordate active ingredient on the end paper had a hair protection effect as a result of hair thickness, tensile strength, hair epidermis observation, and hair component analysis. In addition, it was confirmed that the experimental group treated with green tangerine active ingredient on the end paper contained a relatively large amount of moisture in the hair moisturizing power test result. It is hoped that the development and research of various materials and tools will proceed so that basic cosmetic products containing active ingredients can be developed and used as hair cosmetics, and applied during chemical treatment in the industrial field.