Browse > Article
http://dx.doi.org/10.1007/s40069-017-0185-8

An Efficient Chloride Ingress Model for Long-Term Lifetime Assessment of Reinforced Concrete Structures Under Realistic Climate and Exposure Conditions  

Nguyen, Phu Tho (Institute for Research in Civil and Mechanical Engineering/Sea and Littoral Research Institute, CNRS UMR)
Bastidas-Arteaga, Emilio (Institute for Research in Civil and Mechanical Engineering/Sea and Littoral Research Institute, CNRS UMR)
Amiri, Ouali (Institute for Research in Civil and Mechanical Engineering/Sea and Littoral Research Institute, CNRS UMR)
Soueidy, Charbel-Pierre El (Institute for Research in Civil and Mechanical Engineering/Sea and Littoral Research Institute, CNRS UMR)
Publication Information
International Journal of Concrete Structures and Materials / v.11, no.2, 2017 , pp. 199-213 More about this Journal
Abstract
Chloride penetration is among the main causes of corrosion initiation in reinforced concrete (RC) structures producing premature degradations. Weather and exposure conditions directly affect chloride ingress mechanisms and therefore the operational service life and safety of RC structures. Consequently, comprehensive chloride ingress models are useful tools to estimate corrosion initiation risks and minimize maintenance costs for RC structures placed under chloride-contaminated environments. This paper first presents a coupled thermo-hydro-chemical model for predicting chloride penetration into concrete that accounts for realistic weather conditions. This complete numerical model takes into account multiple factors affecting chloride ingress such as diffusion, convection, chloride binding, ionic interaction, and concrete aging. Since the complete model could be computationally expensive for long-term assessment, this study also proposes model simplifications in order to reduce the computational cost. Long-term chloride assessments of complete and reduced models are compared for three locations in France (Brest, Strasbourg and Nice) characterized by different weather and exposure conditions (tidal zone, de-icing salts and salt spray). The comparative study indicates that the reduced model is computationally efficient and accurate for long-term chloride ingress modeling in comparison to the complete one. Given that long-term assessment requires larger climate databases, this research also studies how climate models may affect chloride ingress assessment. The results indicate that the selection of climate models as well as the considered training periods introduce significant errors for mid- and long- term chloride ingress assessment.
Keywords
reinforced concrete; chloride ingress; moisture transport; heat transfer; corrosion; long-term assessment; weather condition;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 Amiri, O., Ait-Mokhtar, A., Sleiman, H., & Nguyen, P.-T. (2015). Chloride transport in unsaturated concrete. In A. Ait-Mokhtar & O. Millet (Eds.), Structure design and degradation mechanisms in coastal environments (pp. 161-196). New York: Wiley.
2 Andrade, C., & Alonso, C. (1996). Durability design based on models for corrosion rates. In H. Jennings, J. Kropp, & K. Scrivener (Eds.), The modelling of microstructure and its potential for studying transport properties and durability (pp. 473-492). Dordrecht: Springer.
3 Baroghel-Bouny, V., Mainguy, M., Lassabatere, T., & Coussy, O. (1999). Characterization and identification of equilibrium and transfer moisture properties for ordinary and high-performance cementitious materials. Cement and Concrete Research, 29(8), 1225-1238. doi:10.1016/S0008-8846(99)00102-7.   DOI
4 Samson, E., & Marchand, J. (2007). Modeling the effect of temperature on ionic transport in cementitious materials. Cement and Concrete Research, 37(3), 455-468. doi:10.1016/j.cemconres.2006.11.008.   DOI
5 Sleiman, H., Amiri, O., & Ait-Mokhtar, A. (2009). Chloride transport in unsaturated cement-based materials. European Journal of Environmental and Civil Engineering, 13(4), 489-499. doi:10.1080/19648189.2009.9693125.   DOI
6 Srubar, W. V. (2015). Stochastic service-life modeling of chloride-induced corrosion in recycled-aggregate concrete. Cement & Concrete Composites, 55, 103-111. doi:10.1016/j.cemconcomp.2014.09.003.   DOI
7 Tang, L., & Nilsson, L.-O. (1993). Chloride binding capacity and binding isotherms of OPC pastes and mortars. Cement and Concrete Research, 23(2), 247-253.   DOI
8 Tuutti, K. (1982). Corrosion of steel in concrete. Stockholm: Swedish Cement and Concrete Research Institute.
9 Wang, X., Nguyen, M., Stewart, M. G., Syme, M., & Leitch, A. (2010). Analysis of Climate Change Impacts on the Deterioration of Concrete Infrastructure - Part 1: Mechanisms, Practices, Modelling and Simulations - A review. Canberra: CSIRO.
10 Xi, Y., & Bazant, Z. P. (1999). Modeling chloride penetration in saturated concrete. Journal of Materials in Civil Engineering, 11(1), 58-65.   DOI
11 de Vera, G., Hidalgo, A., Climent, M. A., Andrade, C., & Alonso, C. (2000). Chloride-ion activities in simplified synthetic concrete pore solutions: The effect of the accompanying ions. Journal of the American Ceramic Society, 83(3), 640-644. doi:10.1111/j.1151-2916.2000.tb01245.x.   DOI
12 Yuan, Y., & Jiang, J. (2011). Prediction of temperature response in concrete in a natural climate environment. Construction and Building Materials, 25(8), 3159-3167. doi:10.1016/j.conbuildmat.2010.10.008.   DOI
13 Zhang, J., Huang, Y., Qi, K., & Gao, Y. (2012). Interior relative humidity of normal- and high-strength concrete at early age. Journal of Materials in Civil Engineering, 24(6), 615-622. doi:10.1061/(ASCE)MT.1943-5533.0000441.   DOI
14 Buchwald, A. (2000). Determination of the ion diffusion coefficient in moisture and salt loaded masonry materials by impedance spectroscopy. 3rd international PhD symposium, 2, 475.
15 Damrongwiriyanupap, N., Limkatanyu, S., Xi, Y., Limkatanyu, S., & Xi, Y. (2015). A thermo-hygro-coupled model for chloride penetration in concrete structures. Advances in Materials Science and Engineering, 2015, e682940. doi:10.1155/2015/682940.   DOI
16 De Vera, G., Climent, M. A., Viqueira, E., Anton, C., & Lopez, M. P. (2015). Chloride penetration prediction in concrete through an empirical model based on constant flux diffusion. Journal of Materials in Civil Engineering, 27(8), 04014231.   DOI
17 Duracrete. (2000). Statistical quantification of the variables in the limit state functions, DuraCrete-Probabilistic performance based durability design of concrete structures (vol. EU-Brite EuRam III. Contract BRPR-CT95-0132, project BE95-1347/R9).
18 Breysse, D., Chaplain, M., Marache, A., & Rodney, E. (2014). Simulation of synthetic climate at local scale as a mean to assess the impact of climate change on infrastructures. Civil Engineering and Environmental Systems, 31(2), 165-178. doi:10.1080/10286608.2014.912643.   DOI
19 Flint, M., Michel, A., Billington, S. L., & Geiker, M. R. (2014). Influence of temporal resolution and processing of exposure data on modeling of chloride ingress and reinforcement corrosion in concrete. Materials and Structures, 47(4), 729-748. doi:10.1617/s11527-013-0091-8.   DOI
20 Genuchten, M. (1980). A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soils Science of America Journal, 44, 892-898.   DOI
21 Liu, Y., & Weyers, R. E. (1998). Modeling the time to corrosion cracking in chloride contaminated reinforced concrete structures. ACI Materials Journal, 95(6), 675-680.
22 Hidalgo, A., De Vera, G., Climent, M. A., Andrade, C., & Alonso, C. (2001). Measurements of chloride activity coefficients in real portland cement paste pore solutions. Journal of the American Ceramic Society, 84(12), 3008-3012. doi:10.1111/j.1151-2916.2001.tb01128.x.   DOI
23 Imam, A., Anifowose, F., & Azad, A. K. (2015). Residual strength of corroded reinforced concrete beams using an adaptive model based on ANN. International Journal of Concrete Structures and Materials, 9, 159. doi:10.1007/s40069-015-0097-4.   DOI
24 Jensen, O. M., & Hansen, P. F. (1999). Influence of temperature on autogenous deformation and relative humidity change in hardening cement paste. Cement and Concrete Research, 29(4), 567-575.   DOI
25 Kim, H. R., Choi, W. C., Yoon, S. C., et al. (2016). Evaluation of bond properties of reinforced concrete with corroded reinforcement by uniaxial tension testing. International Journal of Concrete Structures and Materials, 10(Suppl 3), 43. doi:10.1007/s40069-016-0152-9.   DOI
26 Larsen, C. K. (1998). Chloride binding in concrete-effect of surrounding environment and concrete composition. PhD thesis. The Norwegian University of Science and Technology.
27 Marchand, J., & Samson, E. (2009). Predicting the service-life of concrete structures-Limitations of simplified models. Cement & Concrete Composites, 31(8), 515-521. doi:10.1016/j.cemconcomp.2009.01.007.   DOI
28 Martin-Perez, B. (1999). Service life modeling of R.C. highway structures exposed to chlorides. PhD thesis. Toronto: University of Toronto.
29 Mualem, Y. (1976). A new model for predicting the hydraulic conductivity of unsaturated porous media. Water Resources Research, 12(3), 513-522.   DOI
30 Morga, M., & Marano, G. C. (2015). Chloride penetration in circular concrete columns. International Journal of Concrete Structures and Materials, 9(2), 173-183. doi:10.1007/s40069-014-0095-y.   DOI
31 Nguyen, T. Q. (2007). Physicochemical modelling of chloride ingresse into cementitious materials. Ph.D. thesis. France.
32 Nguyen, P. T., & Amiri, O. (2016). Study of the chloride transport in unsaturated concrete: Highlighting of electrical double layer, temperature and hysteresis effects. Construction and Building Materials, 122, 284-293. doi:10.1016/j.conbuildmat.2016.05.154.   DOI
33 Nielsen, E. P., & Geiker, M. R. (2003). Chloride diffusion in partially saturated cementitious material. Cement and Concrete Research, 33(1), 133-138. doi:10.1016/S0008-8846(02)00939-0.   DOI
34 Pang, L., & Li, Q. (2016). Service life prediction of RC structures in marine environment using long term chloride ingress data: Comparison between exposure trials and real structure surveys. Construction and Building Materials, 113, 979-987. doi:10.1016/j.conbuildmat.2016.03.156.   DOI
35 Pritzl, M. D., Tabatabai, H., & Ghorbanpoor, A. (2014). Laboratory evaluation of select methods of corrosion prevention in reinforced concrete bridges. International Journal of Concrete Structures and Materials, 8, 201. doi:10.1007/s40069-014-0074-3.   DOI
36 Radlinska, A., McCarthy, L. M., Matzke, J., et al. (2014). Synthesis of DOT use of beam end protection for extending the life of bridges. International Journal of Concrete Structures and Materials, 8, 185. doi:10.1007/s40069-014-0077-0.   DOI
37 Bastidas-Arteaga, E., & Schoefs, F. (2012). Stochastic improvement of inspection and maintenance of corroding reinforced concrete structures placed in unsaturated environments. Engineering Structures, 41, 50-62. doi:10.1016/j.engstruct.2012.03.011.   DOI
38 Baroghel-Bouny, V., Thiery, M., & Wang, X. (2011). Modelling of isothermal coupled moisture-ion transport in cementitious materials. Cement and Concrete Research, 41(8), 828-841. doi:10.1016/j.cemconres.2011.04.001.   DOI
39 Bastidas-Arteaga, E., Chateauneuf, A., Sanchez-Silva, M., Bressolette, P., & Schoefs, F. (2010). Influence of weather and global warming in chloride ingress into concrete: A stochastic approach. Structural Safety, 32(4), 238-249. doi:10.1016/j.strusafe.2010.03.002.   DOI
40 Bastidas-Arteaga, E., Chateauneuf, A., Sanchez-Silva, M., Bressolette, P., & Schoefs, F. (2011). A comprehensive probabilistic model of chloride ingress in unsaturated concrete. Engineering Structures, 33(3), 720-730. doi:10.1016/j.engstruct.2010.11.008.   DOI
41 Bastidas-Arteaga, E., & Schoefs, F. (2015). Sustainable maintenance and repair of RC coastal structures. Proceedings of the ICE-Maritime Engineering, 168(4), 162-173.
42 Bastidas-Arteaga, E., Schoefs, F., Stewart, M. G., & Wang, X. (2013). Influence of global warming on durability of corroding RC structures: A probabilistic approach. Engineering Structures, 51, 259-266. doi:10.1016/j.engstruct.2013.01.006.   DOI
43 Bastidas-Arteaga, E., & Stewart, M. G. (2015). Damage risks and economic assessment of climate adaptation strategies for design of new concrete structures subject to chloride-induced corrosion. Structural Safety Part A, 52, 40-53. doi:10.1016/j.strusafe.2014.10.005.   DOI
44 Bhide, S. (2008). Material Usage and Condition of Existing Bridges in the U.S. Skokie: Portland Cement Association.