Browse > Article

Phytoremediation of Heavy Metal Contaminated Soils Using Transgenic Plants  

Ok, Yong-Sik (Division of Biological Environment, Kangwon National University)
Kim, Jeong-Gyu (Division of Environmental Science and Ecological Engineering, Korea University)
Yang, Jae E. (Division of Biological Environment, Kangwon National University)
Kim, Hee-Joung (Division of Biological Environment, Kangwon National University)
Yoo, Kyung-Yoal (Division of Biological Environment, Kangwon National University)
Park, Chang-Jin (National lnstitute of Agricultural Science and Technology, RDA)
Jeong, Deok-Yeong (Department of Bio Environmental Chemistry, Chungnam National University)
Publication Information
Korean Journal of Soil Science and Fertilizer / v.37, no.6, 2004 , pp. 396-406 More about this Journal
Abstract
Current physical and chemical methodologies, conventionally used to clean up metal contaminated soils, are generally too expensive to apply in large hazardous waste sites including agricultural lands adjacent to closed or abandoned metal mines. Phytoremediation using plants to extract, sequester and detoxify environmental pollutants is one of the cost-effective and aesthetically-pleasing alternatives, compared with environmentally destructive remedial methods currently being practiced. But, phytoremediation has some limitations such as time consuming and low performance: in general, it is seasonally dependent and slower in removing metals than other methods, and metal accumulating plants are slow growers. Improvement of plants for metal tolerance, accumulation, and translocation using genetic engineering techniques recently opened up new possibilities for phytoremediation. In this paper, we have discussed about recent developments in conventional and genetically engineered phytoremediation. For the conventional phytoremediation, focuses are on the natural hyperaccumulator and the chemically assisted phytoremediation. Some pros and cons on the phytoremediation using transgenic plants, coupled with focusing on the mechanistic view points, are also discussed. It might be concluded that the transgenic plants will be effective tools in the practical application of phytoremediation especially for the highly contaminated soils but mechanisms involved should be deeply understood in advance.
Keywords
Phytoremediation; Hyperaccumulator; Transgenic plant; Hg; Cd;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Cunningham, S. D., W. R. Berti, and J. W. Huang. 1995. Agronomic remediation of contaminated soils. Trends Bio. Sci. 13:393-397   DOI   ScienceOn
2 Cunningham, S. D., T. A. Anderson, A. P. Schwab, and F. Hsu. 1996. Phytoremediation of soils contaminated with organic compounds. Adv. Agron. 56:55-114   DOI
3 Georgatsou, E., and D. Alexandraki. 1994. Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:3065-3073   DOI
4 Jung, G. B., W. I. Kim, and K. H. Moon. 2000. Studies on the phytoextraction of cadmium and lead contaminated soils by plant cultivation. Korean J. Environ. Agric. 19:213-217
5 Karenlampi, S., H. Schat, J. Vangronsveld, J. A. C. Verkleij, D. van der Lelie, M. Mergeay, ,and A. I. Tervahauta. 2000. Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ. Pollut. 107:225-231   DOI   ScienceOn
6 Kim, H. M. 2002. Remove of heavy metals by transgenic plant harboring human ferritin. M.S. Thesis. Chonbuk National University, Korea
7 Ok, Y. S., S. H. Kim, D. Y. Kim, H. Lee, S. Lim, and J. G. Kim. 2003a. Feasibility of phytoremediation for metal-contaminated abandoned mining area. Korean J. Soil Sci. Fert. 36:323-332
8 Ok, Y. S., J. Jung, S. Lim, D. Y. Kim, Y. Yoon, and J. G. Kim. 2003b. Effect of amendments and planting methods on the phytoremediation of soil metals in Korea. p. 270. Annual Meeting Abstracts, America Society of Agronomy, Crop Science Society of America and Soil Science Society of America, Denver, CO, USA
9 Raskin I., and B. D. Ensley. 2000. Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley & Sons, Inc., New York, NY, USA
10 Song, W. Y., E. J. Sohn, E. Martinoia, Y. J. Lee, Y. Y. Yang, M. Jasinski, C. Forestier, I. Hwang, and Y. Lee. 2003. Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat. Biotechnol. 21:914-919   DOI   ScienceOn
11 Summers, A. O., and L. I. Sugarman. 1974. Cell-free mercury(Ⅱ) reducing activity in a plasmid-bearing strain of Escherichia coli. J. Bacteriol. 119:242-249
12 Xiang, C., and D. J. Oliver. 1998. Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539-1550   DOI   ScienceOn
13 Yang, Y. Y., J. Y. Jung, W. Y. Song, H. S. Suh, and Y. Lee. 2000. Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiol. 124:1019-1026   DOI   ScienceOn
14 Blaylock, M. J., and J. W. Huang. 2000. Phytoextraction of metals. p.53-70. In I. Raskin (ed.) Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley & Sons, Inc., New York, NY, USA
15 Kim, J. G., N. H. Cho, H. I. Cho, Y. M. Yoon, and S. Lim. 2001. Effects of sulfur concentration in nutrient solution on heavy metal uptake and the level of thiol groups in Artemisia princeps var. orientalis. Plant Soil 113:1067-1070
16 Ok, Y. S., H. Lee, J. Jung, H. Song, N. Chung, S. Lim, and J. G. Kim. 2004a. Bioavailability of cadmium in artificially and naturally contaminated soils. Agric. Chem. Biotechnol. 47:143-146
17 Bizily, S. P., C. L. Rugh, and R. B. Meagher. 2000. Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat. Biotechnol. 18:213-217   DOI   ScienceOn
18 Ok, Y. S., J. Jung, H. Lee, S. Lim, and J. G. Kim. 2003c. Enhancement of plant availability for soil-sorbed cadmium. p. 175. Annual Meeting Abstracts, America Society of Agronomy, Crop Science Society of America and Soil Science Society of America, Denver, CO, USA
19 Pilon-Smits E., and M. Pilon. 2000. Breeding mercury-breathing plants for environmental cleanup. Trends Plant Sci. 5:235-236   DOI   ScienceOn
20 Blaylock, M .J., D. E. Salt, S. Dushenkov, O. Zakharova, C. Gussman, Y. Kapulnik, B. D. Ensley, and I. Raskin. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31:860-865   DOI   ScienceOn
21 Kim, J. G., S. K. Lim, S. H. Lee, C. H. Lee, and C. Y. Jeong. 1999. Evaluation of heavy metal pollution and plant survey around inactive and abandoned mining areas for phytoremediation of heavy metal contaminated soils. Korean J. Environ. Agric. 18:28-34
22 Jiang, X. J., Y. M. Luo, Q. G. Zhao, A. M. J. Baker, P. Christie, and M. H. Wong. 2003. Soil Cd availability to indian mustard and environmental risk following EDTA addition to Cd-contaminated soil. Chemosphere 50:813-818   DOI   ScienceOn
23 Schmidi, A., and K. Jager. 1992. Open questions about sulfur metabolism in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43;325-349   DOI   ScienceOn
24 Baker, A. J. M., and R. R. Brooks. 1989. Terrestrial higher plants which htperaccumulate metallic elements - a review of their distribution, ecology and phytochemistry. Biorecovery 1:81126
25 Jin, T. E. 2000. Isolation and expression of chromium(Ⅵ) reductase gene of heavy metal reducing bacteria in tobacco plants. M.S. Thesis. Hallim University, Korea
26 Kim, W. I., G. B. Jung, M. K. Kim, K. L. Park, and S. G. Yun. 2001. Effects of cadmium concentration in soils on growth and cadmium uptake of vegetable. Korean J. Environ. Agric. 20:175-179
27 Kondo, N., C. Wada-Nakagawa, and Y. Hayashi. 1984. Cadystin A and B, major unit peptides comprising cadmium-binding peptides induced in a fission yeast-seperation, reversion of structures and synthesis. Tetrahedron Lett. 25:3869-3872   DOI   ScienceOn
28 Rough, C. L., H. D. Wilde, N. M. Stack, D. M. Thompson, A. O. Summers, and R. B. Meagher. 1996. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. P. Natl. Acad. Sci. USA 93:3182-3187   DOI   ScienceOn
29 Meharg, A. A., and M. R. Macnair. 1992. Suppression of the high affinity phosphate uptake system, a mechanism of arsenate tolerance in Holcus lanatus L. J. Exp. Bot. 43:519-524   DOI
30 Samuelsen, A. I., R. C. Martin, D. W. S. Mok, and M. C. Mok. 1998. Expression of the yeast FRE genes in transgenic tobacco. Plant Physiol. 118:51-58   DOI   ScienceOn
31 Tessier, A., P. G. C. Campbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51:844-850   DOI   ScienceOn
32 Jung, J., H. J. Jo, S. M. Lee, Y. S. Ok, and J. G. Kim. 2004. Enhancement of biodegradability of EDTA by gamma-ray treatment. J. Radioanal. Nucl. Chem. 262:371-374   DOI   ScienceOn
33 Chen, Y. X., Q. Lin, Y. M. Luo, Y. F. He, S. J. Zhen, Y. L. Tu, G. M. Tian, M. H. and Wong. 2003. Role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere 50:807-811   DOI   ScienceOn
34 Hamon, R. E., M. J. Mclaughlin, R. Naidu, and R. Correll. 1998. Long-term changes in cadmium bioavailability in oil. Environ. Sci. Technol. 32:3699-3703   DOI   ScienceOn
35 Harrison, P. M., and P. Arosio. 1996. The ferritin: molecular properties, iron storage function and cellular regulation. Biochem. Biophys. Acta. 1275:116-203
36 Steffens, J. C. 1990. The heavy metal-binding peptides of plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:553-575   DOI   ScienceOn
37 Chasteen, N. D., and P. M. Harrison. 1999. Mineralization in ferritin: an efficient means of iron storage. J. Struc. Biol. 126:182-194   DOI   ScienceOn
38 Gekeler, W., E. Grill, E. L. Winnacker, and M. H. Zenk. 1989. Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins. Z. Naturforsch. 44c:361-369
39 Noctor, G., A. M. Arisi, L. Jouanin, M. Valadier, Y. Roux, and C. H. Foyer. 1997. Light-dependent modulation of folier glutathione synthesis and associated amino acid metabolism in poplar overexpressing γ-glutamylcysteine synthetase. Planta 202:357-369   DOI   ScienceOn
40 Kneer, R., T. M. Kutchan, A. hochberger, and M. H. Zenk. 1992. Saccharomyces cerevisiae and Neurospora crassa contain heavy metal sequestering phytochelatin. Arch. Microbiol. 157:305-310   DOI   ScienceOn
41 Chaney, R. L., M. Malik, Y. M. Li, S. L. Brown, E. P. Brewer, J. S. Angle, and A. J. M. Bakers. 1997. Phytoremediation of soil metals. Curr. Opin. Biotechnol. 8:279-284   DOI   ScienceOn
42 Rough, C. L., J. F. Senecoff, R. B. Meagher, and S. A. Merkle. 1998. Development of transgenic yellow poplar for mecury phytoremediation. Nat. Biotechnol. 16:925-928   DOI   ScienceOn
43 Sarret, G., J. Vangronsveld, A. Manceau, M. Musso, J. D. Haen, J. J. Menthonnex, and J. L. Hazemann. 2000. Accumulation forms of Zn and Pb in Phaselous vulgaris in the presence and absence of EDTA. Environ. Sci. Technol. 35:2854-2859   DOI   ScienceOn
44 Bennetzen, J. L. and T. L. Adams. 1984. Selection and characterization of cadmium-resistant suspension cultures of the wild tomato Lycopersicon peruvianum. Plant Cell Rep. 3:258-261   DOI   ScienceOn
45 Walker, D. J., R. Clemente, A. Roig, and M. P. Bernal. 2003. The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils. Environ. Pollut. 122:303-312   DOI   ScienceOn
46 Krishnamurti, G. S. R., P. M. Huang, and K. C. J. Van Rees. 1997. Kinetics of cadmium release from soils as influenced by organic: implications in cadmium availability. J. Environ. Qual. 26:271-277   DOI   ScienceOn
47 Murphy, A., and L. Taiz. 1995. Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes. Plant Physiol. 109:945-954   DOI   ScienceOn
48 Ok, Y. S. 2003d. Empirical and mechanistic approach in adsorption and bioavailability of cadmium in soils and plants: implications in phytoremediation. Ph.D. Dissertation. Korea University, Korea
49 Rensing, C., U. Kues, U. Stahl, D. H. Nies, and B. Friedrich. 1992. Expression of bacterial mercuric ion reductase in Saccharomyces cerevisiae. J. Bacteriol. 174:1288-1292   DOI
50 Kang, B. H., S. I. Shim, S. G. Lee, K. H. Kim, and I. M. Jung. 1998. Study on the potential of phytoremediation using wild plants for heavy metal pollution. Korean J. Environ. Agric. 17:312-318
51 Brooks, R. R. 1998. Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archeology, mineral exploration and phytomining. CAB International, New York, NY, USA
52 Salt, D. E., M. Blaylock, N. P. B. A. Kumar, V. Dushenkov, B. D. Ensley, I. Chet, and I. Raskin. 1995. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Bio/Technology. 13:468-473   DOI   ScienceOn
53 Wallace, A., R. T. Mueller, J. W. Cha, and G. V. Alexander. 1974. Soil pH, excess lime and chelating agent on micronutrients in soybeans and bush beans. Agron. J. 66:698-700   DOI
54 Yoon, Y., Y. S. Ok, D. Y. Kim, and J. G. Kim. 2004. Agricultural recycling of the by-product concentrate of livestock wastewater treatment plant processes with VSEP RO and bio-ceramic SBR. Water Sci. Technol. 49:405-412
55 Suh, M. C., D. Choi, and J. R. Liu. 1998. Cadmium resistance in transgenic tobacco plants expressing the Nicotiana glutinosa L. metallothionein-like gene. Mol. Cells 8:678-684
56 Lee, H. N., Y. S. Ok, and J. G. Kim. 2004. Screening of wintering Cd hyperaccumulators. Korean J. Soil Sci. Fert. 37:14-18
57 Ehrlich H. L. 1997. Microbes and metals. Appl. Microbiol. Biotechnol. 48:687-692   DOI   ScienceOn
58 Grill, E., E. L. Winnacker, and M. H. Zenk. 1985. Phytochelatin: The principle heavy metal complexing peptides of higher plants. Science 230:674-676   DOI   PUBMED   ScienceOn
59 Ok, Y. S., J. Yang, H. J. Kim, K. R. Ryu, H. Lee, and J. G. Kim. 2004b. Enhanced phytoextraction of cadmium from the contaminated soils. p. 4872. Annual Meeting Abstracts, America Society of Agronomy, Crop Science Society of America and Soil Science Society of America, Seattle, Washington, USA