Browse > Article
http://dx.doi.org/10.5808/GI.2016.14.3.125

Sequence Analysis of Hypothetical Proteins from Helicobacter pylori 26695 to Identify Potential Virulence Factors  

Naqvi, Ahmad Abu Turab (Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia)
Anjum, Farah (Female College of Applied Medical Science, Taif University)
Khan, Faez Iqbal (School of Chemistry and Chemical Engineering, Henan University of Technology)
Islam, Asimul (Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia)
Ahmad, Faizan (Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia)
Hassan, Md. Imtaiyaz (Center for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia)
Abstract
Helicobacter pylori is a Gram-negative bacteria that is responsible for gastritis in human. Its spiral flagellated body helps in locomotion and colonization in the host environment. It is capable of living in the highly acidic environment of the stomach with the help of acid adaptive genes. The genome of H. pylori 26695 strain contains 1,555 coding genes that encode 1,445 proteins. Out of these, 340 proteins are characterized as hypothetical proteins (HP). This study involves extensive analysis of the HPs using an established pipeline which comprises various bioinformatics tools and databases to find out probable functions of the HPs and identification of virulence factors. After extensive analysis of all the 340 HPs, we found that 104 HPs are showing characteristic similarities with the proteins with known functions. Thus, on the basis of such similarities, we assigned probable functions to 104 HPs with high confidence and precision. All the predicted HPs contain representative members of diverse functional classes of proteins such as enzymes, transporters, binding proteins, regulatory proteins, proteins involved in cellular processes and other proteins with miscellaneous functions. Therefore, we classified 104 HPs into aforementioned functional groups. During the virulence factors analysis of the HPs, we found 11 HPs are showing significant virulence. The identification of virulence proteins with the help their predicted functions may pave the way for drug target estimation and development of effective drug to counter the activity of that protein.
Keywords
drug discovery; drug target; Helicobacter pylori; hypothetical proteins; pathogenesis; virulence;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Shiota S, Suzuki R, Yamaoka Y. The significance of virulence factors in Helicobacter pylori. J Dig Dis 2013;14:341-349.   DOI
2 Testerman TL, Morris J. Beyond the stomach: an updated view of Helicobacter pylori pathogenesis, diagnosis, and treatment. World J Gastroenterol 2014;20:12781-12808.   DOI
3 Saha S, Raghava GP. VICMpred: an SVM-based method for the prediction of functional proteins of Gram-negative bacteria using amino acid patterns and composition. Genomics Proteomics Bioinformatics 2006;4:42-47.   DOI
4 Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol 1990;215:403-410.   DOI
5 Khan FI, Shahbaaz M, Bisetty K, Waheed A, Sly WS, Ahmad F, et al. Large scale analysis of the mutational landscape in $\beta$-glucuronidase: a major player of mucopolysaccharidosis type VII. Gene 2016;576(1 Pt 1):36-44.   DOI
6 Shahbaaz M, Bisetty K, Ahmad F, Hassan MI. In silico approaches for the identification of virulence candidates amongst hypothetical proteins of Mycoplasma pneumoniae 309. Comput Biol Chem 2015;59 Pt A:67-80.
7 Zaidi S, Hassan MI, Islam A, Ahmad F. The role of key residues in structure, function, and stability of cytochrome-c. Cell Mol Life Sci 2014;71:229-255.   DOI
8 Devika NT, Amresh P, Hassan MI, Ali BM. Molecular modeling and simulation of the human eNOS reductase domain, an enzyme involved in the release of vascular nitric oxide. J Mol Model 2014;20:2470.   DOI
9 Sillitoe I, Cuff AL, Dessailly BH, Dawson NL, Furnham N, Lee D, et al. New functional families (FunFams) in CATH to improve the mapping of conserved functional sites to 3D structures. Nucleic Acids Res 2013;41:D490-D498.   DOI
10 Lo Conte L, Ailey B, Hubbard TJ, Brenner SE, Murzin AG, Chothia C. SCOP: a structural classification of proteins database. Nucleic Acids Res 2000;28:257-259.   DOI
11 Mi H, Muruganujan A, Thomas PD. PANTHER in 2013: modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Res 2013;41:D377-D386.   DOI
12 Bateman A, Coin L, Durbin R, Finn RD, Hollich V, Griffiths-Jones S, et al. The Pfam protein families database. Nucleic Acids Res 2004;32:D138-D141.   DOI
13 Geer LY, Domrachev M, Lipman DJ, Bryant SH. CDART: protein homology by domain architecture. Genome Res 2002;12:1619-1623.   DOI
14 Hassan MI, Waheed A, Grubb JH, Klei HE, Korolev S, Sly WS. High resolution crystal structure of human $\beta$-glucuronidase reveals structural basis of lysosome targeting. PLoS One 2013;8:e79687.   DOI
15 Krogh A, Larsson B, von Heijne G, Sonnhammer EL. Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. J Mol Biol 2001;305:567-580.   DOI
16 Brown LM. Helicobacter pylori: epidemiology and routes of transmission. Epidemiol Rev 2000;22:283-297.   DOI
17 Cai CZ, Han LY, Ji ZL, Chen X, Chen YZ. SVM-Prot: Webbased support vector machine software for functional classification of a protein from its primary sequence. Nucleic Acids Res 2003;31:3692-3697.   DOI
18 Rappoport N, Karsenty S, Stern A, Linial N, Linial M. ProtoNet 6.0: organizing 10 million protein sequences in a compact hierarchical family tree. Nucleic Acids Res 2012;40:D313-D320.   DOI
19 Khan S, Shahbaaz M, Bisetty K, Ahmad F, Hassan MI. Classification and functional analyses of putative conserved proteins from Chlamydophila pneumoniae CWL029. Interdiscip Sci 2015 Dec 9 [Epub]. http://dx.doi.org/10.1007/s12539-015-0134-7.   DOI
20 Garg A, Gupta D. VirulentPred: a SVM based prediction method for virulent proteins in bacterial pathogens. BMC Bioinformatics 2008;9:62.   DOI
21 Hassan MI. Editorial. Recent advances in the structure-based drug design and discovery. Curr Top Med Chem 2016;16:899-900.
22 Hassan MI, Bilgrami S, Kumar V, Singh N, Yadav S, Kaur P, et al. Crystal structure of the novel complex formed between zinc alpha2-glycoprotein (ZAG) and prolactin-inducible protein (PIP) from human seminal plasma. J Mol Biol 2008;384:663-672.   DOI
23 Hassan MI, Kumar V, Singh TP, Yadav S. Structural model of human PSA: a target for prostate cancer therapy. Chem Biol Drug Des 2007;70:261-267.   DOI
24 Hassan MI, Kumar V, Somvanshi RK, Dey S, Singh TP, Yadav S. Structure-guided design of peptidic ligand for human prostate specific antigen. J Pept Sci 2007;13:849-855.   DOI
25 Shahbaaz M, Bisetty K, Ahmad F, Hassan MI. Towards new drug targets? Function prediction of putative proteins of Neisseria meningitidis MC58 and their virulence characterization. OMICS 2015;19:416-434.   DOI
26 Letunic I, Doerks T, Bork P. SMART 7: recent updates to the protein domain annotation resource. Nucleic Acids Res 2012;40:D302-D305.   DOI
27 Hoda N, Naz H, Jameel E, Shandilya A, Dey S, Hassan MI, et al. Curcumin specifically binds to the human calcium-calmodulin-dependent protein kinase IV: fluorescence and molecular dynamics simulation studies. J Biomol Struct Dyn 2016;34:572-584.   DOI
28 Khan FI, Aamir M, Wei DQ, Ahmad F, Hassan MI. Molecular mechanism of Ras-related protein Rab-5A and effect of mutations in the catalytically active phosphate-binding loop. J Biomol Struct Dyn 2016:1-14.
29 Naz F, Shahbaaz M, Khan S, Bisetty K, Islam A, Ahmad F, et al. PKR-inhibitor binds efficiently with human microtubule affinity-regulating kinase 4. J Mol Graph Model 2015;62:245-252.   DOI
30 Jones P, Binns D, Chang HY, Fraser M, Li W, McAnulla C, et al. InterProScan 5: genome-scale protein function classification. Bioinformatics 2014;30:1236-1240.   DOI
31 Shahbaaz M, Bisetty K, Ahmad F, Hassan I. Current advances in the identification and characterization of putative drug and vaccine targets in the bacterial genomes. Curr Top Med Chem 2016;16:1040-1069.
32 Kumar K, Prakash A, Islam A, Ahmad F, Hassan MI. Identification of functional candidates amongst hypothetical proteins of Neisseria gonorrhoeae. Lett Drug Des Discov 2016;13:451-464.   DOI
33 Kumar K, Prakash A, Anjum F, Islam A, Ahmad F, Hassan MI. Structure-based functional annotation of hypothetical proteins from Candida dubliniensis: a quest for potential drug targets. 3 Biotech 2015;5:561-576.
34 Bonhivers M, Ghazi A, Boulanger P, Letellier L. FhuA, a transporter of the Escherichia coli outer membrane, is converted into a channel upon binding of bacteriophage T5. EMBO J 1996;15:1850-1856.
35 Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, et al. STRING v9.1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res 2013;41:D808-D815.   DOI
36 Kadokura H, Katzen F, Beckwith J. Protein disulfide bond formation in prokaryotes. Annu Rev Biochem 2003;72:111-135.   DOI
37 Campbell JA, Davies GJ, Bulone V, Henrissat B. A classification of nucleotide-diphospho-sugar glycosyltransferases based on amino acid sequence similarities. Biochem J 1997;326(Pt 3):929-939.   DOI
38 Goebl M, Yanagida M. The TPR snap helix: a novel protein repeat motif from mitosis to transcription. Trends Biochem Sci 1991;16:173-177.   DOI
39 Kisiela M, Skarka A, Ebert B, Maser E. Hydroxysteroid dehydrogenases (HSDs) in bacteria: a bioinformatic perspective. J Steroid Biochem Mol Biol 2012;129:31-46.   DOI
40 Cerveny L, Straskova A, Dankova V, Hartlova A, Ceckova M, Staud F, et al. Tetratricopeptide repeat motifs in the world of bacterial pathogens: role in virulence mechanisms. Infect Immun 2013;81:629-635.   DOI
41 Praefcke GJ, McMahon HT. The dynamin superfamily: universal membrane tubulation and fission molecules? Nat Rev Mol Cell Biol 2004;5:133-147.   DOI
42 Marais A, Mendz GL, Hazell SL, Megraud F. Metabolism and genetics of Helicobacter pylori: the genome era. Microbiol Mol Biol Rev 1999;63:642-674.
43 Geis G, Suerbaum S, Forsthoff B, Leying H, Opferkuch W. Ultrastructure and biochemical studies of the flagellar sheath of Helicobacter pylori. J Med Microbiol 1993;38:371-377.   DOI
44 Shahbaaz M, Ahmad F, Hassan MI. Structure-based function analysis of putative conserved proteins with isomerase activity from Haemophilus influenzae. 3 Biotech 2015;5:741-763.
45 Kawagishi I, Homma M, Williams AW, Macnab RM. Characterization of the flagellar hook length control protein fliK of Salmonella typhimurium and Escherichia coli. J Bacteriol 1996;178:2954-2959.   DOI
46 Bukau B. Regulation of the Escherichia coli heat-shock response. Mol Microbiol 1993;9:671-680.   DOI
47 Chaturvedi G, Tewari R, Mrigank, Agnihotri N, Vishwakarma RA, Ganguly NK. Inhibition of Helicobacter pylori adherence by a peptide derived from neuraminyl lactose binding adhesin. Mol Cell Biochem 2001;228:83-89.   DOI
48 Naqvi AA, Shahbaaz M, Ahmad F, Hassan MI. Identification of functional candidates amongst hypothetical proteins of Treponema pallidum ssp. pallidum. PLoS One 2015;10:e0124177.   DOI
49 Naqvi AA, Ahmad F, Hassan MI. Identification of functional candidates amongst hypothetical proteins of Mycobacterium leprae Br4923, a causative agent of leprosy. Genome 2015;58:25-42.   DOI
50 Scott MS, Calafell SJ, Thomas DY, Hallett MT. Refining protein subcellular localization. PLoS Comput Biol 2005;1:e66.   DOI
51 Bork P, Dandekar T, Diaz-Lazcoz Y, Eisenhaber F, Huynen M, Yuan Y. Predicting function: from genes to genomes and back. J Mol Biol 1998;283:707-725.   DOI
52 Gronow S, Brabetz W, Brade H. Comparative functional characterization in vitro of heptosyltransferase I (WaaC) and II (WaaF) from Escherichia coli. Eur J Biochem 2000;267:6602-6611.   DOI
53 Green JM, Merkel WK, Nichols BP. Characterization and sequence of Escherichia coli pabC, the gene encoding aminodeoxychorismate lyase, a pyridoxal phosphate-containing enzyme. J Bacteriol 1992;174:5317-5323.   DOI
54 Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, et al. PSORTb 3.0: improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 2010;26:1608-1615.   DOI
55 Kumar K, Prakash A, Tasleem M, Islam A, Ahmad F, Hassan MI. Functional annotation of putative hypothetical proteins from Candida dubliniensis. Gene 2014;543:93-100.   DOI
56 Shahbaaz M, Hassan MI, Ahmad F. Functional annotation of conserved hypothetical proteins from Haemophilus influenzae Rd KW20. PLoS One 2013;8:e84263.   DOI
57 Gasteiger E, Gattiker A, Hoogland C, Ivanyi I, Appel RD, Bairoch A. ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Res 2003;31:3784-3788.   DOI
58 Bhasin M, Garg A, Raghava GP. PSLpred: prediction of subcellular localization of bacterial proteins. Bioinformatics 2005;21:2522-2524.   DOI
59 Yu CS, Lin CJ, Hwang JK. Predicting subcellular localization of proteins for gram-negative bacteria by support vector machines based on n-peptide compositions. Protein Sci 2004;13:1402-1406.   DOI
60 Petersen TN, Brunak S, von Heijne G, Nielsen H. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 2011;8:785-786.   DOI
61 Bendtsen JD, Kiemer L, Fausboll A, Brunak S. Non-classical protein secretion in bacteria. BMC Microbiol 2005;5:58.   DOI
62 Tusnady GE, Simon I. The HMMTOP transmembrane topology prediction server. Bioinformatics 2001;17:849-850.   DOI
63 Cid TP, Fernandez MC, Benito Martinez S, Jones NL. Pathogenesis of Helicobacter pylori infection. Helicobacter 2013;18 Suppl 1:12-17.   DOI
64 Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1984;1:1311-1315.
65 Higgins CF. ABC transporters: physiology, structure and mechanism: an overview. Res Microbiol 2001;152:205-210.   DOI
66 Cover TL, Blaser MJ. Helicobacter pylori infection, a paradigm for chronic mucosal inflammation: pathogenesis and implications for eradication and prevention. Adv Intern Med 1996;41:85-117.
67 Tomb JF, White O, Kerlavage AR, Clayton RA, Sutton GG, Fleischmann RD, et al. The complete genome sequence of the gastric pathogen Helicobacter pylori. Nature 1997;388:539-547.   DOI
68 Schneider E, Hunke S. ATP-binding-cassette (ABC) transport systems: functional and structural aspects of the ATP-hydrolyzing subunits/domains. FEMS Microbiol Rev 1998;22:1-20.   DOI
69 Labigne A, de Reuse H. Determinants of Helicobacter pylori pathogenicity. Infect Agents Dis 1996;5:191-202.
70 Yamaoka Y, Graham DY. Helicobacter pylori virulence and cancer pathogenesis. Future Oncol 2014;10:1487-1500.   DOI
71 Nakamura S, Matsumoto T. Helicobacter pylori and gastric mucosa-associated lymphoid tissue lymphoma: recent progress in pathogenesis and management. World J Gastroenterol 2013;19:8181-8187.   DOI
72 Tomoda A, Kamiya S, Suzuki H. Helicobacter pylori and pathogenesis. Biomed Res Int 2015;2015:304768.
73 Watari J, Chen N, Amenta PS, Fukui H, Oshima T, Tomita T, et al. Helicobacter pylori associated chronic gastritis, clinical syndromes, precancerous lesions, and pathogenesis of gastric cancer development. World J Gastroenterol 2014;20:5461-5473.   DOI
74 de Bernard M, Josenhans C. Pathogenesis of Helicobacter pylori infection. Helicobacter 2014;19 Suppl 1:11-18.   DOI
75 De Falco M, Lucariello A, Iaquinto S, Esposito V, Guerra G, De Luca A. Molecular mechanisms of Helicobacter pylori pathogenesis. J Cell Physiol 2015;230:1702-1707.   DOI
76 Hagiwara T, Mukaisho K, Nakayama T, Hattori T, Sugihara H. Proton pump inhibitors and Helicobacter pylori-associated pathogenesis. Asian Pac J Cancer Prev 2015;16:1315-1319.   DOI