DOI QR코드

DOI QR Code

Thermo-oxidation behaviour of organic matrix composite materials at high temperatures

  • Received : 2015.08.27
  • Accepted : 2015.10.22
  • Published : 2016.04.25

Abstract

The present paper is a review of the main activities carried out within the context of the COMPTINN' program, a joint research project founded by a FUI program (Fonds $Unifi{\acute{e}}s$ $Interminist{\acute{e}}riels$) in which four research teams focused on the thermo-oxidation behaviour of HTS-TACTIX carbon-epoxy composite at 'high' temperatures ($120^{\circ}C-180^{\circ}C$). The scientific aim of the COMPTINN' program was to better identify, with a multi-scale approach, the link between the physico-chemical mechanisms involved in thermo-oxidation phenomena, and to provide theoretical and numerical tools for predicting the mechanical behaviour of aged composite materials including damage onset and development.

Keywords

Acknowledgement

Supported by : French FUI (Fond Unifies Interministeriels)

References

  1. Bellenger, V. and Verdu, J. (1985), "Oxidative skeleton breaking in epoxy-amine networks", J. Appl. Polym. Sci., 30, 363-375. https://doi.org/10.1002/app.1985.070300132
  2. Bowles, K.J., Jayne, D. and Leonhardt, T. (1993), "Isothermal aging effects on PMR-15 resin", SAMPE Quarterly, 2-9.
  3. Bowles, K.J., Papadopoulos, D., Inghram, L., McCorkle, L. and Klan, O.V. (2001), "Long-time durability of PMR15 matrix polymer at 204, 260, 288, and $316^{\circ}C$", NASA/TM-2001-210602, 2001 Research repport.
  4. Celina, M.C., Dayile, A.R. and Quintana, A. (2013), "A perspective on the inherent oxidation sensitivity of epoxy materials", Polymer, 54(13), 3290-3296. https://doi.org/10.1016/j.polymer.2013.04.042
  5. Chocinski-Arnault, L., Olivier, L. and Lafarie-Frenot, M.C. (2009), "Effects of thermal oxidation on an epoxy-amine thermoset studied by mechanical spectroscopy", Mater. Sci. Eng., A, 521-522, 287-290. https://doi.org/10.1016/j.msea.2008.09.083
  6. Colin, X. and Verdu, J. (2005), "Strategy for studying thermal oxidation of organic matrix composites", Compos. Sci. Tech., 65, 411-419. https://doi.org/10.1016/j.compscitech.2004.09.011
  7. Colin, X., Marais, C. and Verdu, J. (2001), "A new method for predicting the thermal oxidation of thermoset matrices: application to an amine crosslinked epoxy", Polym. Test., 20(7), 795-803. https://doi.org/10.1016/S0142-9418(01)00021-6
  8. Colin, X., Mavel, A., Marais, C. and Verdu, J. (2005), "Interaction between cracking and oxidation in organic matrix composites", J. Compos. Mater., 39(15), 1371-1389. https://doi.org/10.1177/0021998305050430
  9. Daghia, F. and Cluzel, C. (2013), "An oxidation/delamination test for laminated composites with organic matrix", JNC 18, Nantes, France, June.
  10. Daghia, F. and Cluzel, C. (2014), "Experimental study of the propagation of delamination under oxidizing environment and mechanical loading", ECCM 16, Seville, Spain, June.
  11. Daghia, F., Zhang, F., Cluzel, C. and Ladeveze, P. (2015), "Thermo-mechano-oxidative behavior at the ply‟s scale: the effect of oxidation on transverse cracking in carbon-epoxy composites", Compos. struct., 134, 602-612. https://doi.org/10.1016/j.compstruct.2015.08.103
  12. Dole, P. and Chauchard, J. (1995), "Determination of oxidation profiles of elastomeric materials. Part I. Microscopic approach: pinpoint DMA", Polym. Degrad. Stab., 47(3), 441-448. https://doi.org/10.1016/0141-3910(95)00012-7
  13. Gigliotti, M., Olivier, L., Vu, D.Q., Grandidier, J.C. and Lafarie-Frenot, M.C. (2011), "Local shrinkage and stress induced by thermo-oxidation in composite materials at high temperatures", J. Mech. Phys. Solid., 59(3), 696-712. https://doi.org/10.1016/j.jmps.2010.12.001
  14. Hairer, E. and Wanner, G. (1996), Stiff and Differential-Algebraic Problems, Series In Computational Mathematics, Springer, Berlin, Germany.
  15. Johnson, L.L., Eby, R.K. and Meador, M.A.B. (2003), "Investigation of oxidation profile in PMR-15 polyimide using atomic force microscope (AFM)", Polym., 44(1), 187-197. https://doi.org/10.1016/S0032-3861(02)00726-7
  16. Ladeveze, P. and Lubineau, G. (2002), "An enhanced mesomodel for laminates based on micromechanics", Compos. Sci. Tech., 62(4), 533-541. https://doi.org/10.1016/S0266-3538(01)00145-2
  17. Ladeveze, P. and Lubineau, G. (2002), "On a damage mesomodel for laminates: micro-meso relationships, possibilities and limits", Compos. Sci. Tech., 61(15), 2149-2158. https://doi.org/10.1016/S0266-3538(01)00109-9
  18. Ladeveze, P., Daghia, F., Abisset, E. and Le Mauff, C. (2014), "A micromechanics-based interface mesomodel for virtual testing of laminated composites", Adv. Model. Simul. Eng. Sci., 1(1), 1-16. https://doi.org/10.1186/2213-7467-1-1
  19. Lafarie-Frenot, M.C., Rouquie, S., Ho, N.Q. and Bellenger, V. (2006), "Comparison of damage development in C/epoxy laminates during isothermal aging or thermal cycling", Compos. Part A: Appl. Sci. Manuf., 37(4), 662-671. https://doi.org/10.1016/j.compositesa.2005.05.002
  20. Lafarie-Frenot, M.C., Grandidier, J.C., Gigliotti, M., Olivier, L., Colin, X., Verdu, J. and Cinquin, J. (2010), "Thermo-oxidation behaviour of composite materials at high temperatures: A review of research activities carried out within the COMEDI program", Polym. Degrad. Stab., 95(6), 965-974. https://doi.org/10.1016/j.polymdegradstab.2010.03.019
  21. Lubineau, G. and Ladeveze, P. (2008), "Construction of a micromechanics-based intralaminar mesomodel, and illustrations in ABAQUS/Standard", Comput. Mater. Sci., 43(1), 137-145. https://doi.org/10.1016/j.commatsci.2007.07.050
  22. Lubineau, G., Violeau, D. and Ladeveze, P. (2009), "Illustrations of a microdamage model for laminates under oxidizing thermal cycling", Compos. Sci. Tech., 69(1), 3-9 https://doi.org/10.1016/j.compscitech.2007.10.042
  23. Minervino, M., Gigliotti, M., Lafarie-Frenot, M.C. and Grandidier, J.C. (2013), "The effect of thermooxidation on the mechanical behaviour of polymer epoxy materials", Polym. Test., 32(6), 1020-1028. https://doi.org/10.1016/j.polymertesting.2013.05.009
  24. Minervino, M., Gigliotti, M., Lafarie-Frenot, M.C. and Grandidier, J.C. (2014), "A coupled experimental/numerical approach for the modelling of the local mechanical behaviour of epoxy polymer materials", J. Mech. Phys. Solid., 67, 129-151. https://doi.org/10.1016/j.jmps.2014.02.006
  25. Nettles, A.T., Gregory, E.D. and Jackson, J.R. (2007), "Using the climbing drum peel (CDP) test to obtain a GIC value for core/face sheet bonds", J. Compos. Mater., 41, 2863-2876 https://doi.org/10.1177/0021998307079974
  26. Olivier, L. (2008), "Prevision du vieillissement thermo-oxydant de composites a matrice organique dedies a l‟aeronautique : prise en compte des couplages multi-physiques", PhD Dissertation, University of Poitiers, France.
  27. Olivier, L., Ho, N.Q., Grandidier, J.C. and Lafarie-Frenot, M.C. (2008), "Characterization by ultra-micro indentation of an oxidized epoxy polymer: correlation with the predictions of a kinetic model of oxidation", Polym. Degrad. Stab., 93(2), 489-497. https://doi.org/10.1016/j.polymdegradstab.2007.11.012
  28. Putthanarat, S., Tandon, G.P. and Schoeppner, G.A. (2007), "Influence of polishing time on thermooxidation characterization of isothermally aged PMR-15 resin", Polym. Degrad. Stab., 92(11), 2110-2120. https://doi.org/10.1016/j.polymdegradstab.2007.07.007
  29. Putthanarat, S., Tandon, G.P. and Schoeppner, G.A. (2008), "Influence of aging temperature, time, and environment on thermo-oxidative behaviour of PMR-15: nanomechanical characterization", J. Mater. Sci., 43(20), 6714-6723. https://doi.org/10.1007/s10853-008-2800-1
  30. Rasoldier, N., Colin, X., Verdu, J., Bocquet, M., Olivier, L., Chocinski-Arnault, L. and Lafarie-Frenot, M.C. (2008), "Model systems for thermo-oxidised epoxy composite matrices", Compos. Part A: Appl. Sci. Manuf., 39(9), 1522-1529. https://doi.org/10.1016/j.compositesa.2008.05.016
  31. Schoeppner, G.A., Tandon, G.P. and Ripberger, E.R. (2007), "Anisotropic oxidation and weight loss in PMR-15 composites", Compos. Part A: Appl. Sci. Manuf., 38(3), 890-904. https://doi.org/10.1016/j.compositesa.2006.07.006
  32. Tandon, G.P., Pochiraju, K.V. and Schoeppner, G.A. (2006), "Modelling of oxidative development in PMR-15 resin", Polym. Degrad. Stab., 91(8), 1861-1869. https://doi.org/10.1016/j.polymdegradstab.2005.11.008
  33. Terekhina, S., Mille, M., Fayolle, B. and Colin, X. (2013), "Oxidation induced changes in viscoelastic properties of a thermostable epoxy matrix", Polym. Sci., Series A, 55(10), 614-624. https://doi.org/10.1134/S0965545X13090058
  34. Vu, D.Q., Gigliotti, M. and Lafarie-Frenot, M.C. (2012), "Experimental characterization of thermooxidation-induced shrinkage and damage in polymer-matrix composites", Compos. Part A: Appl. Sci. Manuf., 43(4), 577-586. https://doi.org/10.1016/j.compositesa.2011.12.018

Cited by

  1. Structure-properties relationships in isosorbide-based polyacetals: Influence of linear or cyclic architecture on polymer physicochemical properties vol.93, 2017, https://doi.org/10.1016/j.eurpolymj.2017.03.050
  2. Thermo-oxidative induced shrinkage in Organic Matrix Composites for High Temperature Applications: Effect of fibre arrangement and oxygen pressure vol.146, 2016, https://doi.org/10.1016/j.compstruct.2016.03.007
  3. Assessment of thermo-oxidative induced chemical strain by inverse analysis of shrinkage profiles in unidirectional composites vol.157, 2016, https://doi.org/10.1016/j.compstruct.2016.07.037
  4. New Advances in the Kinetic Modeling of Thermal Oxidation of Epoxy-Diamine Networks vol.8, pp.None, 2016, https://doi.org/10.3389/fmats.2021.720455