Browse > Article
http://dx.doi.org/10.5806/AST.2020.33.2.98

Impurity profiling and chemometric analysis of methamphetamine seizures in Korea  

Shin, Dong Won (Forensic Genetics & Chemistry Division, Supreme Prosecutors' Office)
Ko, Beom Jun (Forensic Genetics & Chemistry Division, Supreme Prosecutors' Office)
Cheong, Jae Chul (Forensic Genetics & Chemistry Division, Supreme Prosecutors' Office)
Lee, Wonho (Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University)
Kim, Suhkmann (Department of Chemistry, Center for Proteome Biophysics and Chemistry Institute for Functional Materials, Pusan National University)
Kim, Jin Young (Forensic Genetics & Chemistry Division, Supreme Prosecutors' Office)
Publication Information
Analytical Science and Technology / v.33, no.2, 2020 , pp. 98-107 More about this Journal
Abstract
Methamphetamine (MA) is currently the most abused illicit drug in Korea. MA is produced by chemical synthesis, and the final target drug that is produced contains small amounts of the precursor chemicals, intermediates, and by-products. To identify and quantify these trace compounds in MA seizures, a practical and feasible approach for conducting chromatographic fingerprinting with a suite of traditional chemometric methods and recently introduced machine learning approaches was examined. This was achieved using gas chromatography (GC) coupled with a flame ionization detector (FID) and mass spectrometry (MS). Following appropriate examination of all the peaks in 71 samples, 166 impurities were selected as the characteristic components. Unsupervised (principal component analysis (PCA), hierarchical cluster analysis (HCA), and K-means clustering) and supervised (partial least squares-discriminant analysis (PLS-DA), orthogonal partial least squares-discriminant analysis (OPLS-DA), support vector machines (SVM), and deep neural network (DNN) with Keras) chemometric techniques were employed for classifying the 71 MA seizures. The results of the PCA, HCA, K-means clustering, PLS-DA, OPLS-DA, SVM, and DNN methods for quality evaluation were in good agreement. However, the tested MA seizures possessed distinct features, such as chirality, cutting agents, and boiling points. The study indicated that the established qualitative and semi-quantitative methods will be practical and useful analytical tools for characterizing trace compounds in illicit MA seizures. Moreover, they will provide a statistical basis for identifying the synthesis route, sources of supply, trafficking routes, and connections between seizures, which will support drug law enforcement agencies in their effort to eliminate organized MA crime.
Keywords
methamphetamine; impurity profiling; chemometric analysis; GC-FID/MS;
Citations & Related Records
연도 인용수 순위
  • Reference
1 C. Chulathida and C. Summon, Curr. Opin. Psychiatry, 28, 269-274 (2015).   DOI
2 A. Gamma, R. Schleifer, W. Weinmann, A. Buadze and M. Liebrenz, PLoS One, 11, e0166566(1-10) (2016).   DOI
3 United Nations Office on Drugs and Crime, World Drug Report 2019, Vienna, United Nations, 2019.
4 Z. Wang, X. T. Shao, D. Q. Tan, J. H. Yan, Y. Xiao, Q. D. Zheng, W. Pei, Z. Wang and D. G. Wang, Drug Alcohol. Depend., 194, 302-309 (2019).   DOI
5 C. Chomchai and S. Chomchai, Curr. Opin. Psychiatry, 28, 269-274 (2015).   DOI
6 C. Angkurawaranon, W. Jiraporncharoen, S. Likhitsathian, K. Thaikla, M. Kanato, U. Perngparn, S. Assanangkornchai and A. Aramrattana, Drug Alcohol Rev., 37, 658-663 (2018).   DOI
7 H. T. Luong, Asian Survey, 59, 717-737 (2019).   DOI
8 K. Tanaka, T. Ohmor, T. Inoue and S. Seta, J. Forensic Sci., 39, 500-511 (1994).
9 F. M. Dayrit and M. C. Dumlao, Forensic Sci. Int., 144, 29-36 (2004).   DOI
10 Supreme Prosecutors' Office, White Paper on Drug- Related Crimes 2018, Seoul, Korea, 2019.
11 D. E. Greydanus and J. Merrick, Int. J. Disabil. Hum. Dev., 12, 229-233 (2013).
12 B. J. Ko, S. I. Suh, Y. J. Suh, M. K. In and S. H. Kim, Forensic Sci. Int., 170, 142-147 (2007).   DOI
13 A. W. Brzeczko, R. Leech and J. G. Stark, Am. J. Drug. Alcohol Abuse, 39, 284-290 (2013).   DOI
14 K. M. Andrews, J. Forensic Sci., 40, 551-560 (1995).   DOI
15 S. Choe, S. Heo, H. Choi, E. Kim, H. Chung and J. Lee, Forensic Sci. Int., 227, 48-51 (2013).   DOI
16 H. J. Lee, E. Han, J. Lee, H. Chung and S. G. Min, Forensic Sci. Int., 268, 116-122 (2016).   DOI
17 K. Kuwayama, K. Tsujikawa, H. Miyaguchi, T. Kanamori, Y. Iwata, H. Inoue, S. Saitoh and T. Kishi, Forensic Sci. Int., 160, 44-52 (2006).   DOI
18 Y. T. Iwata, H. Inoue, K. Kuwayama, T. Kanamori, K. Tsujikawa, H. Miyaguchi and T. Kishi, Forensic Sci. Int., 161, 92-96 (2006).   DOI
19 A. R. Khajeamiri, M. Faizi, F. Sohani, T. Baheri and F. Kobarfard, Forensic Sci. Int., 217, 204-206 (2012).   DOI
20 Y. Makino, Y. Urano and T. Nagano, J. Chromatogr. A, 947, 151-154 (2002).   DOI
21 H. Lee, S. Shen and N. Grinberg, J. Liq. Chromatogr. R. T., 31, 2235-2252 (2008).   DOI
22 T. Pacchiarotta, E. Nevedomskaya, A. Carrasco-Pancorbo, A. M. Deelder and O. A. Mayboroda, J. Biomol. Tech., 21, 205-213 (2010).
23 J. V. Hinshaw, LCGC North Am., 33, 470-477 (2015).
24 V. Kunalan, N. Nic Daeid, W. J. Kerr, H. A. Buchanan and A. R. McPherson, Anal. Chem., 81, 7342-7348 (2009).   DOI
25 B. Remberg and A. H. Stead, Bull. Narcotics, LI, 97-118 (1999).
26 R. P. Barron, A. V. Kruegel, J. M. Moore and T. C. Kram, Anal. Chem., 57, 1147-1158 (1974).
27 H. F. Skinner, Forensic Sci. Int., 48, 123-134 (1990).   DOI
28 T. S. Cantrell, B. John, L. Johnson and A. C. Allen, Forensic Sci. Int., 39, 39-53 (1988).   DOI
29 H. Salouros, M. Collins, A. V. George and S. Davies, J. Forensic Sci., 55, 605-615 (2010).   DOI
30 B. J. Ko, S. Suh, Y. J. Suh, M. K. In, S. H. Kim and J. H. Kim, Forensic Sci. Int., 221, 92-97 (2012).   DOI
31 H. Messai, M. Farman, A. Sarraj-Laabidi, A. Hammami- Semmar and N. Semmar, Foods, 5, 77(1-35) (2016).   DOI
32 D. Granato, J. S. Santos, G. B. Escher, B. L. Ferreira and R. M. Maggio, Trends Food Sci. Technol., 72, 83-90 (2018).   DOI
33 M. Cuperlovic-Culf, Metabolites, 8, 4(1-16) (2018).   DOI
34 H. Tsugawa, Y. Tsujimoto, M. Arita, T. Bamba and E. Fukusaki, BMC Bioinformatics, 12, 131(1-13) (2011).   DOI
35 N. Gerhardt, S. Schwolow, S. Rohn, P. R. Perez-Cacho, H. Galan-Soldevilla L. Arce and P. Weller, Food Chem., 278, 720-728 (2019).   DOI
36 K. Siren, U. Fischer and J. Vestner, Anal. Chim. Acta: X, 1, 100005(1-8) (2019).
37 J. Hestness, S. Narang, N. Ardalani, G. Diamos, H. Jun, H. Kianinejad, M. M. A. Patwary, Y. Yang and Y. Zhou, arXiv preprint arXiv:1712.00409 (2017).
38 S. H. Kim, S. J. Oh, G. Y. Yoon and W. K. Kim, Korean J. Artif. Int., 5, 29-37 (2017).   DOI