DOI QR코드

DOI QR Code

Ln-resin and HIBA Method for La-Ce and Sm-Nd Isotope Measurement

La-Ce 및 Sm-Nd 동위원소계 측정을 위한 란탄-레진법과 HIBA(Hydroxy Isobutyric Acid)분리법의 상호비교

  • Lee, Seung-Gu (Geological Research Division, Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Hyomin (Geochemical Analysis Department, Korea Institute of Geoscience and Mineral Resources) ;
  • Asahara, Yoshihiro (Department of Earth and Environmental Sciences, Nagoya University) ;
  • Lee, Mi-Jeong (Division of Polar Earth-System Sciences, Korea Polar Research Institute) ;
  • Choo, MiKyeong (Division of Polar Earth-System Sciences, Korea Polar Research Institute) ;
  • Lee, SeungRyeol (Geological Research Division, Korea Institute of Geoscience and Mineral Resources)
  • 이승구 (한국지질자원연구원 국토지질연구본부) ;
  • 이효민 (한국지질자원연구원 지질자원분석실) ;
  • ;
  • 이미정 (극지연구소 극지지구시스템연구부) ;
  • 추미경 (극지연구소 극지지구시스템연구부) ;
  • 이승렬 (한국지질자원연구원 국토지질연구본부)
  • Received : 2012.10.22
  • Accepted : 2012.12.04
  • Published : 2012.12.31

Abstract

A column chemistry is the most useful tools for isolating the elements of interest in isotope geochemistry. Here we introduce the chemical experimental procedure for Sm, Nd, La and Ce separation such as Teflon powder or Ln-resin method using HDEHP of KIGAM, KBSI, KOPRI and ${\alpha}$-HIBA(${\alpha}$-Hydroxy Isobutyric acid) method of Nagoya University, Japan. This technical report will provide an useful information in selecting the experiment method for rare earth element isotope system study such as Sm-Nd and La-Ce isotope system.

원소의 고순도분리는 동위원소계 연구의 기초가 된다. 이 기술보고에서는 Sm-Nd 연대측정법에 중요한 원소군인 Sm과 Nd의 원소분리에 자주 이용되고 있는 HDEHP를 이용한 테플론분말(란탄-레진)법과 Sm-Nd 동위원소계 및 La-Ce 동위원소계의 연구를 위한 원소분리법인 ${\alpha}$-HIBA(${\alpha}$-Hydroxy Isobutyric acid)법의 장단점을 한국지질자원연구원(KIGAM), 기초과학지원연구원(KBSI), 극지연구소(KOPRI) 및 일본 나고야대학과 같은 각 기관별 용리곡선을 통해 비교 소개하였다. 동위원소 지구화학연구를 위한 이 고순도의 원소분리법 비교는 Sm-Nd계 및 La-Ce계 동위원소 지구화학연구자의 실험법 선택에 많은 도움을 줄 것이다.

Keywords

Acknowledgement

Supported by : 한국지질자원연구원

References

  1. Berguland, M., Wieser, E., 2011, Isotopic composition of the elements 2009 (IUPAC Technical Report). Pure and Applied Chemistry, 83, 397-410. https://doi.org/10.1351/PAC-REP-10-06-02
  2. Bock, B., Liebetrau, V., Eisenhauer, A., Frei, R., Leipe, T., 2005, Nd isotope signature of Holocene Baltic Mn/Fe precipitates as monitor of climate change during the Little Ice Age. Geochimica et Cosmochimica Acta, 69, 2253-2263. https://doi.org/10.1016/j.gca.2004.11.016
  3. Cheong, C-S., Kwon, S-T., 2010, Calibration of Sm-Nd Mixed Spike by Teflon Powder Method. Journal of Analytcal Science & Technology, 1, 30-36. https://doi.org/10.5355/JAST.2010.30
  4. Chopin, G.R., Silva, R.J., 1956, Separation of the Lanthanides by Ion Exchange with Alpha-hydroxy Isobutric Acid. Journal of Inorganic Nuclear Chemistry, 3, 153-154. https://doi.org/10.1016/0022-1902(56)80076-6
  5. Dickin, A.P., Jones, N.W., Thirlwall, M.F., Thompson, R.N., 1987, A Ce/Nd isotope study of crustal contamination processes affecting Palaeocene magmas in Syke, Northwest Scotland. Contrbution to Mineralogy and Pertrology, 96, 455-464. https://doi.org/10.1007/BF01166690
  6. Eugster, O., Tera, F., Burnett, D.S., Wasseburg, G.J., 1970, Isotopic composition of gadolinium and neutron-capture effects in some meteorites. Journal of Geophysical Research, 75, 2753-2767. https://doi.org/10.1029/JB075i014p02753
  7. Faure, G., 1986, Principles of Isotope Geology. John Wiley & Sons, New York.
  8. Fevre, B. Le, Pin, C., 2005, A straightiforward separation scheme for concomitant Lu-Hf and Sm-Nd ratio and isotope dilution analysis. Analytica Chemica Acta, 543, 209-221. https://doi.org/10.1016/j.aca.2005.04.044
  9. Foti, S.C., Wish, L., 1967, A rapid method for the carrierfree determinaion of individual rare earths by ion exchange at rom temperature. Journal of Chromatography, 29, 203-209. https://doi.org/10.1016/S0021-9673(00)92644-X
  10. Hirahara, Y., Takahashi, T., Miyazaki, T., Vaglarav, B.S., Chang, Q., Kimura, J-I., Tatsumi, Y., 2009, Precise Nd isotope analysis of igneous rocks using cation exchange chromatography and thermal ionization mass spectrometry(TIMS). JAMSTEC-R IFREE Special Issue, 65-72.
  11. Johnson, W.C., Quill, L.L., Dannis, F., 1947, Rare Earths Separation Developed on Manhattan Project. Chemical and Engineering News, 2494.
  12. Makshima, A., Nakamura, A., 1991, Precise measurement of cerium isotope composition in rock samples. Chemical Geology, 94, 1-11. https://doi.org/10.1016/S0009-2541(10)80012-9
  13. Makishima, A., Nath, B.N., Nakamura, E., 2008, New sequential separation procedure for Sr, Nd and Pb isotope ratio measurement in geological materal using MC-ICPMS and TIMS. Geochemical Journal, 42, 237-246. https://doi.org/10.2343/geochemj.42.237
  14. Murphy, D.T., Brandon, A.D., Debaille, V., Burgess, R., Ballentine, C., 2010, In search of a hidden long-term isolated sub-chondritic $^{142}Nd/^{144}Nd$ reservoir in the deep mantle: Implications for the Nd isotope systematics of the Earth. Geochimica et Cosmochimica Acta, 74, 738-750. https://doi.org/10.1016/j.gca.2009.10.005
  15. Pin, C., Zalduegui, J.F.S., 1997, Sequential separation of light rare-earth elements, thorium and uranium by miniaturlized extraction chromatography: Application to isotopic analyses of silicate rocks. Analytica Chemica Acta, 339, 79-89. https://doi.org/10.1016/S0003-2670(96)00499-0
  16. Rehkamper, M., Gartner, M., Goldstein, S.L., 1996, Separation of Ce from other rare-earth elements with application of Sm-Nd and La-Ce chronometry. Chemical Geology, 129, 201-208. https://doi.org/10.1016/0009-2541(95)00143-3
  17. Richard, P., Shimizu, N., Allegre, C.J., 1976, $^{142}Nd/^{144}Nd$, a natural tracer: an application to oceanic basalts. Earth and Planetary Science Letters, 31, 269-278. https://doi.org/10.1016/0012-821X(76)90219-3
  18. Scher, H.D., Martin, E.E., 2004, Circulation in the Southern Ocean during the Paleogene infered from neodymium isotopes. Earth and Planetary Science Letters, 228, 391-405. https://doi.org/10.1016/j.epsl.2004.10.016
  19. Stewart, D.C., 1955, Rapid Separation of Tracer Amounts of Rara Earth Elements of the Yttrium Group. Analytical Chemistry, 27, 1279-1282. https://doi.org/10.1021/ac60104a021
  20. Tanaka, T., Shimizu, H., Kawata, Y., Masuda, A., 1987, Combined La-Ce and Sm-Nd isotope systematics in petrogenetic studies. Nature 327, 113-117. https://doi.org/10.1038/327113a0
  21. Tanimizu, M., Tanaka, T., 2002, Coupled Ce-Nd isotope systematics and rare earth elements differentiation of the moon. Geochimica et Cosmochimica Acta, 66, 4007-4014. https://doi.org/10.1016/S0016-7037(02)00961-4
  22. Tazoe, H., Obata, H., Amakawa, H., Nozaki, Y., Gamo, T., 2007a, Precise determination of the cerium isotopic compositions of surface seawater in the Northwest Pacific Ocean and Tokyo Bay. Marine Chemistry, 103, 1-14. https://doi.org/10.1016/j.marchem.2006.05.008
  23. Tazoe, H., Obata, H., Gamo., T., 2007b, Determination of cerium isotopic ratios in geochemical samples using oxidative extraction technique with chelating resin. Journal of Analytical Atomic Spectrometry, 22, 616-622. https://doi.org/10.1039/b617285g
  24. Whitehouse, M.J., 1989. Sm-Nd evidence for diachronous crustal accrtion in the Lewisian complex of northwest Scotland. Growth of Continental Crust. Ed. L.D. Ashwal, Tectonophysics 161, 245-256. https://doi.org/10.1016/0040-1951(89)90157-1
  25. Yang, Y-h., Zhang, H-f., Chu, Z-y., Xie, L-w., Wu, F-y., 2010. Combined chemical separation of Lu, Hf, Rb, Sr, Sm and Nd from a single rock digest and precise and accurate isotope determinations of Lu-Hf, Rb-Sr ad Sm-Nd isotope systems using Multi-Collector ICP-MS and TIMS. International Journal of Mass Spectrometry, 290, 120-126. https://doi.org/10.1016/j.ijms.2009.12.011

Cited by

  1. The Effect of Eluent Concentration on the Separation of Nd with Ln-resin Method vol.24, pp.4, 2015, https://doi.org/10.7854/JPSK.2015.24.4.365