Phytoremediation of Heavy Metal Contaminated Soils Using Transgenic Plants

중금속 오염토양의 식물정화 기술과 형질전환 식물의 이용에 관한 최근 연구동향

  • Ok, Yong-Sik (Division of Biological Environment, Kangwon National University) ;
  • Kim, Jeong-Gyu (Division of Environmental Science and Ecological Engineering, Korea University) ;
  • Yang, Jae E. (Division of Biological Environment, Kangwon National University) ;
  • Kim, Hee-Joung (Division of Biological Environment, Kangwon National University) ;
  • Yoo, Kyung-Yoal (Division of Biological Environment, Kangwon National University) ;
  • Park, Chang-Jin (National lnstitute of Agricultural Science and Technology, RDA) ;
  • Jeong, Deok-Yeong (Department of Bio Environmental Chemistry, Chungnam National University)
  • 옥용식 (강원대학교 생물환경학부) ;
  • 김정규 (고려대학교 환경생태공학부) ;
  • 양재의 (강원대학교 생물환경학부) ;
  • 김휘중 (강원대학교 생물환경학부) ;
  • 유경열 (강원대학교 생물환경학부) ;
  • 박창진 (농업과학기술원) ;
  • 정덕영 (충남대학교 생물환경화학과)
  • Received : 2004.10.28
  • Accepted : 2004.11.11
  • Published : 2004.12.30

Abstract

Current physical and chemical methodologies, conventionally used to clean up metal contaminated soils, are generally too expensive to apply in large hazardous waste sites including agricultural lands adjacent to closed or abandoned metal mines. Phytoremediation using plants to extract, sequester and detoxify environmental pollutants is one of the cost-effective and aesthetically-pleasing alternatives, compared with environmentally destructive remedial methods currently being practiced. But, phytoremediation has some limitations such as time consuming and low performance: in general, it is seasonally dependent and slower in removing metals than other methods, and metal accumulating plants are slow growers. Improvement of plants for metal tolerance, accumulation, and translocation using genetic engineering techniques recently opened up new possibilities for phytoremediation. In this paper, we have discussed about recent developments in conventional and genetically engineered phytoremediation. For the conventional phytoremediation, focuses are on the natural hyperaccumulator and the chemically assisted phytoremediation. Some pros and cons on the phytoremediation using transgenic plants, coupled with focusing on the mechanistic view points, are also discussed. It might be concluded that the transgenic plants will be effective tools in the practical application of phytoremediation especially for the highly contaminated soils but mechanisms involved should be deeply understood in advance.

Keywords

References

  1. Baker, A. J. M., and R. R. Brooks. 1989. Terrestrial higher plants which htperaccumulate metallic elements - a review of their distribution, ecology and phytochemistry. Biorecovery 1:81126
  2. Bennetzen, J. L. and T. L. Adams. 1984. Selection and characterization of cadmium-resistant suspension cultures of the wild tomato Lycopersicon peruvianum. Plant Cell Rep. 3:258-261 https://doi.org/10.1007/BF00269307
  3. Bizily, S. P., C. L. Rugh, and R. B. Meagher. 2000. Phytodetoxification of hazardous organomercurials by genetically engineered plants. Nat. Biotechnol. 18:213-217 https://doi.org/10.1038/72678
  4. Blaylock, M .J., D. E. Salt, S. Dushenkov, O. Zakharova, C. Gussman, Y. Kapulnik, B. D. Ensley, and I. Raskin. 1997. Enhanced accumulation of Pb in Indian mustard by soil-applied chelating agents. Environ. Sci. Technol. 31:860-865 https://doi.org/10.1021/es960552a
  5. Blaylock, M. J., and J. W. Huang. 2000. Phytoextraction of metals. p.53-70. In I. Raskin (ed.) Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley & Sons, Inc., New York, NY, USA
  6. Brooks, R. R. 1998. Plants that hyperaccumulate heavy metals: their role in phytoremediation, microbiology, archeology, mineral exploration and phytomining. CAB International, New York, NY, USA
  7. Chaney, R. L., M. Malik, Y. M. Li, S. L. Brown, E. P. Brewer, J. S. Angle, and A. J. M. Bakers. 1997. Phytoremediation of soil metals. Curr. Opin. Biotechnol. 8:279-284 https://doi.org/10.1016/S0958-1669(97)80004-3
  8. Chasteen, N. D., and P. M. Harrison. 1999. Mineralization in ferritin: an efficient means of iron storage. J. Struc. Biol. 126:182-194 https://doi.org/10.1006/jsbi.1999.4118
  9. Chen, Y. X., Q. Lin, Y. M. Luo, Y. F. He, S. J. Zhen, Y. L. Tu, G. M. Tian, M. H. and Wong. 2003. Role of citric acid on the phytoremediation of heavy metal contaminated soil. Chemosphere 50:807-811 https://doi.org/10.1016/S0045-6535(02)00223-0
  10. Cunningham, S. D., W. R. Berti, and J. W. Huang. 1995. Agronomic remediation of contaminated soils. Trends Bio. Sci. 13:393-397 https://doi.org/10.1016/S0167-7799(00)88987-8
  11. Cunningham, S. D., T. A. Anderson, A. P. Schwab, and F. Hsu. 1996. Phytoremediation of soils contaminated with organic compounds. Adv. Agron. 56:55-114 https://doi.org/10.1016/S0065-2113(08)60179-0
  12. Ehrlich H. L. 1997. Microbes and metals. Appl. Microbiol. Biotechnol. 48:687-692 https://doi.org/10.1007/s002530051116
  13. Gekeler, W., E. Grill, E. L. Winnacker, and M. H. Zenk. 1989. Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins. Z. Naturforsch. 44c:361-369
  14. Georgatsou, E., and D. Alexandraki. 1994. Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae. Mol. Cell. Biol. 14:3065-3073 https://doi.org/10.1128/MCB.14.5.3065
  15. Grill, E., E. L. Winnacker, and M. H. Zenk. 1985. Phytochelatin: The principle heavy metal complexing peptides of higher plants. Science 230:674-676 https://doi.org/10.1126/science.230.4726.674
  16. Hamon, R. E., M. J. Mclaughlin, R. Naidu, and R. Correll. 1998. Long-term changes in cadmium bioavailability in oil. Environ. Sci. Technol. 32:3699-3703 https://doi.org/10.1021/es980198b
  17. Harrison, P. M., and P. Arosio. 1996. The ferritin: molecular properties, iron storage function and cellular regulation. Biochem. Biophys. Acta. 1275:116-203
  18. Jiang, X. J., Y. M. Luo, Q. G. Zhao, A. M. J. Baker, P. Christie, and M. H. Wong. 2003. Soil Cd availability to indian mustard and environmental risk following EDTA addition to Cd-contaminated soil. Chemosphere 50:813-818 https://doi.org/10.1016/S0045-6535(02)00224-2
  19. Jin, T. E. 2000. Isolation and expression of chromium(Ⅵ) reductase gene of heavy metal reducing bacteria in tobacco plants. M.S. Thesis. Hallim University, Korea
  20. Jung, G. B., W. I. Kim, and K. H. Moon. 2000. Studies on the phytoextraction of cadmium and lead contaminated soils by plant cultivation. Korean J. Environ. Agric. 19:213-217
  21. Jung, J., H. J. Jo, S. M. Lee, Y. S. Ok, and J. G. Kim. 2004. Enhancement of biodegradability of EDTA by gamma-ray treatment. J. Radioanal. Nucl. Chem. 262:371-374 https://doi.org/10.1023/B:JRNC.0000046765.08734.88
  22. Kang, B. H., S. I. Shim, S. G. Lee, K. H. Kim, and I. M. Jung. 1998. Study on the potential of phytoremediation using wild plants for heavy metal pollution. Korean J. Environ. Agric. 17:312-318
  23. Karenlampi, S., H. Schat, J. Vangronsveld, J. A. C. Verkleij, D. van der Lelie, M. Mergeay, ,and A. I. Tervahauta. 2000. Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environ. Pollut. 107:225-231 https://doi.org/10.1016/S0269-7491(99)00141-4
  24. Kim, J. G., S. K. Lim, S. H. Lee, C. H. Lee, and C. Y. Jeong. 1999. Evaluation of heavy metal pollution and plant survey around inactive and abandoned mining areas for phytoremediation of heavy metal contaminated soils. Korean J. Environ. Agric. 18:28-34
  25. Kim, J. G., N. H. Cho, H. I. Cho, Y. M. Yoon, and S. Lim. 2001. Effects of sulfur concentration in nutrient solution on heavy metal uptake and the level of thiol groups in Artemisia princeps var. orientalis. Plant Soil 113:1067-1070
  26. Kim, H. M. 2002. Remove of heavy metals by transgenic plant harboring human ferritin. M.S. Thesis. Chonbuk National University, Korea
  27. Kim, W. I., G. B. Jung, M. K. Kim, K. L. Park, and S. G. Yun. 2001. Effects of cadmium concentration in soils on growth and cadmium uptake of vegetable. Korean J. Environ. Agric. 20:175-179
  28. Kneer, R., T. M. Kutchan, A. hochberger, and M. H. Zenk. 1992. Saccharomyces cerevisiae and Neurospora crassa contain heavy metal sequestering phytochelatin. Arch. Microbiol. 157:305-310 https://doi.org/10.1007/BF00248673
  29. Kondo, N., C. Wada-Nakagawa, and Y. Hayashi. 1984. Cadystin A and B, major unit peptides comprising cadmium-binding peptides induced in a fission yeast-seperation, reversion of structures and synthesis. Tetrahedron Lett. 25:3869-3872 https://doi.org/10.1016/S0040-4039(01)91190-6
  30. Krishnamurti, G. S. R., P. M. Huang, and K. C. J. Van Rees. 1997. Kinetics of cadmium release from soils as influenced by organic: implications in cadmium availability. J. Environ. Qual. 26:271-277 https://doi.org/10.2134/jeq1997.00472425002600010038x
  31. Lee, H. N., Y. S. Ok, and J. G. Kim. 2004. Screening of wintering Cd hyperaccumulators. Korean J. Soil Sci. Fert. 37:14-18
  32. Meharg, A. A., and M. R. Macnair. 1992. Suppression of the high affinity phosphate uptake system, a mechanism of arsenate tolerance in Holcus lanatus L. J. Exp. Bot. 43:519-524 https://doi.org/10.1093/jxb/43.4.519
  33. Murphy, A., and L. Taiz. 1995. Comparison of metallothionein gene expression and nonprotein thiols in ten Arabidopsis ecotypes. Plant Physiol. 109:945-954 https://doi.org/10.1104/pp.109.3.945
  34. Noctor, G., A. M. Arisi, L. Jouanin, M. Valadier, Y. Roux, and C. H. Foyer. 1997. Light-dependent modulation of folier glutathione synthesis and associated amino acid metabolism in poplar overexpressing γ-glutamylcysteine synthetase. Planta 202:357-369 https://doi.org/10.1007/s004250050138
  35. Ok, Y. S., S. H. Kim, D. Y. Kim, H. Lee, S. Lim, and J. G. Kim. 2003a. Feasibility of phytoremediation for metal-contaminated abandoned mining area. Korean J. Soil Sci. Fert. 36:323-332
  36. Ok, Y. S., J. Jung, S. Lim, D. Y. Kim, Y. Yoon, and J. G. Kim. 2003b. Effect of amendments and planting methods on the phytoremediation of soil metals in Korea. p. 270. Annual Meeting Abstracts, America Society of Agronomy, Crop Science Society of America and Soil Science Society of America, Denver, CO, USA
  37. Ok, Y. S., J. Jung, H. Lee, S. Lim, and J. G. Kim. 2003c. Enhancement of plant availability for soil-sorbed cadmium. p. 175. Annual Meeting Abstracts, America Society of Agronomy, Crop Science Society of America and Soil Science Society of America, Denver, CO, USA
  38. Ok, Y. S. 2003d. Empirical and mechanistic approach in adsorption and bioavailability of cadmium in soils and plants: implications in phytoremediation. Ph.D. Dissertation. Korea University, Korea
  39. Ok, Y. S., H. Lee, J. Jung, H. Song, N. Chung, S. Lim, and J. G. Kim. 2004a. Bioavailability of cadmium in artificially and naturally contaminated soils. Agric. Chem. Biotechnol. 47:143-146
  40. Ok, Y. S., J. Yang, H. J. Kim, K. R. Ryu, H. Lee, and J. G. Kim. 2004b. Enhanced phytoextraction of cadmium from the contaminated soils. p. 4872. Annual Meeting Abstracts, America Society of Agronomy, Crop Science Society of America and Soil Science Society of America, Seattle, Washington, USA
  41. Pilon-Smits E., and M. Pilon. 2000. Breeding mercury-breathing plants for environmental cleanup. Trends Plant Sci. 5:235-236 https://doi.org/10.1016/S1360-1385(00)01630-7
  42. Raskin I., and B. D. Ensley. 2000. Phytoremediation of toxic metals: using plants to clean up the environment. John Wiley & Sons, Inc., New York, NY, USA
  43. Rensing, C., U. Kues, U. Stahl, D. H. Nies, and B. Friedrich. 1992. Expression of bacterial mercuric ion reductase in Saccharomyces cerevisiae. J. Bacteriol. 174:1288-1292 https://doi.org/10.1128/jb.174.4.1288-1292.1992
  44. Rough, C. L., H. D. Wilde, N. M. Stack, D. M. Thompson, A. O. Summers, and R. B. Meagher. 1996. Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. P. Natl. Acad. Sci. USA 93:3182-3187 https://doi.org/10.1073/pnas.93.8.3182
  45. Rough, C. L., J. F. Senecoff, R. B. Meagher, and S. A. Merkle. 1998. Development of transgenic yellow poplar for mecury phytoremediation. Nat. Biotechnol. 16:925-928 https://doi.org/10.1038/nbt1098-925
  46. Salt, D. E., M. Blaylock, N. P. B. A. Kumar, V. Dushenkov, B. D. Ensley, I. Chet, and I. Raskin. 1995. Phytoremediation: a novel strategy for the removal of toxic metals from the environment using plants. Bio/Technology. 13:468-473 https://doi.org/10.1038/nbt0595-468
  47. Samuelsen, A. I., R. C. Martin, D. W. S. Mok, and M. C. Mok. 1998. Expression of the yeast FRE genes in transgenic tobacco. Plant Physiol. 118:51-58 https://doi.org/10.1104/pp.118.1.51
  48. Sarret, G., J. Vangronsveld, A. Manceau, M. Musso, J. D. Haen, J. J. Menthonnex, and J. L. Hazemann. 2000. Accumulation forms of Zn and Pb in Phaselous vulgaris in the presence and absence of EDTA. Environ. Sci. Technol. 35:2854-2859 https://doi.org/10.1021/es000219d
  49. Schmidi, A., and K. Jager. 1992. Open questions about sulfur metabolism in plants. Ann. Rev. Plant Physiol. Plant Mol. Biol. 43;325-349 https://doi.org/10.1146/annurev.pp.43.060192.001545
  50. Song, W. Y., E. J. Sohn, E. Martinoia, Y. J. Lee, Y. Y. Yang, M. Jasinski, C. Forestier, I. Hwang, and Y. Lee. 2003. Engineering tolerance and accumulation of lead and cadmium in transgenic plants. Nat. Biotechnol. 21:914-919 https://doi.org/10.1038/nbt850
  51. Steffens, J. C. 1990. The heavy metal-binding peptides of plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 41:553-575 https://doi.org/10.1146/annurev.pp.41.060190.003005
  52. Suh, M. C., D. Choi, and J. R. Liu. 1998. Cadmium resistance in transgenic tobacco plants expressing the Nicotiana glutinosa L. metallothionein-like gene. Mol. Cells 8:678-684
  53. Summers, A. O., and L. I. Sugarman. 1974. Cell-free mercury(Ⅱ) reducing activity in a plasmid-bearing strain of Escherichia coli. J. Bacteriol. 119:242-249
  54. Tessier, A., P. G. C. Campbell, and M. Bisson. 1979. Sequential extraction procedure for the speciation of particulate trace metals. Anal. Chem. 51:844-850 https://doi.org/10.1021/ac50043a017
  55. Wallace, A., R. T. Mueller, J. W. Cha, and G. V. Alexander. 1974. Soil pH, excess lime and chelating agent on micronutrients in soybeans and bush beans. Agron. J. 66:698-700 https://doi.org/10.2134/agronj1974.00021962006600050027x
  56. Walker, D. J., R. Clemente, A. Roig, and M. P. Bernal. 2003. The effects of soil amendments on heavy metal bioavailability in two contaminated Mediterranean soils. Environ. Pollut. 122:303-312 https://doi.org/10.1016/S0269-7491(02)00287-7
  57. Xiang, C., and D. J. Oliver. 1998. Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10:1539-1550 https://doi.org/10.1105/tpc.10.9.1539
  58. Yang, Y. Y., J. Y. Jung, W. Y. Song, H. S. Suh, and Y. Lee. 2000. Identification of rice varieties with high tolerance or sensitivity to lead and characterization of the mechanism of tolerance. Plant Physiol. 124:1019-1026 https://doi.org/10.1104/pp.124.3.1019
  59. Yoon, Y., Y. S. Ok, D. Y. Kim, and J. G. Kim. 2004. Agricultural recycling of the by-product concentrate of livestock wastewater treatment plant processes with VSEP RO and bio-ceramic SBR. Water Sci. Technol. 49:405-412