• Title/Summary/Keyword: Chaos synchronization

Search Result 72, Processing Time 0.02 seconds

Synchronization of Dynamical Happiness Model

  • Bae, Youngchul
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.14 no.2
    • /
    • pp.91-97
    • /
    • 2014
  • Chaotic dynamics is an active research area in fields such as biology, physics, sociology, psychology, physiology, and engineering. Interest in chaos is also expanding to the social sciences, such as politics, economics, and societal events prediction. Most people pursue happiness, both spiritual and physical in many cases. However, happiness is not easy to define, because people differ in how they perceive it. Happiness can exist in mind and body. Therefore, we need to be happy in both simultaneously to achieve optimal happiness. To do this, we need to synchronize mind and body. In this paper, we propose a chaotic synchronization method in a mathematical model of happiness organized by a second-order ordinary differential equation with external force. This proposed mathematical happiness equation is similar to Duffing's equation, because it is derived from that equation. We introduce synchronization method from our mathematical happiness model by using the derived Duffing equation. To achieve chaotic synchronization between the human mind and body, we apply an idea of mind/body unity originating in Oriental philosophy. Of many chaotic synchronization methods, we use only coupled synchronization, because this method is closest to representing mind/body unity. Typically, coupled synchronization can be applied only to non-autonomous systems, such as a modified Duffing system. We represent the result of synchronization using a differential time series mind/body model.

A study on Mutual Cooperative Control in the Chaos Mobile Robot (카오스 로봇에서의 상호 연동 제어)

  • Bae, Young-Chul;Kim, Chun-Suk
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.1
    • /
    • pp.942-946
    • /
    • 2005
  • In this paper, we propose that the mutual cooperative control in the chaotic mobile robot. In order to achieve mutual cooperative control in the mobile robot, we apply coupled synchronization technique and driven synchronization technique in the mobile robot with obstacle.

  • PDF

The Secure Communication Method for Build Small World (Small World 구축을 위한 비밀 통신 기법)

  • 배영철;구영덕
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2004.05b
    • /
    • pp.705-708
    • /
    • 2004
  • In this paper, we proposed that the secure communication method for build small world. In order to secure communication in the small world, we used Chua's oscillator which well represent the chaos dynamics and composed several stage with Chua's oscillator by using coupled synchronization method. This paper shows a secure communication result in the small world network using coupled synchronization method.

  • PDF

A study on Generalized Synchronization in the State-Controlled Cellular Neural Network(SC-CNN)

  • Rae Youngchul;Kim Yi-gon;Tinduka Mathias
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.5 no.4
    • /
    • pp.291-296
    • /
    • 2005
  • In this paper, we introduce a generalized synchronization method and secure communication in the State-Controlled Cellular Neural Network (SC-CNN). We make a SC-CNN using the n-double scroll. A SC-CNN is created by applying identical n-double scroll or non-identical n-double scroll and Chua's oscillator with weak coupled method to each cell. SC-CNN synchronization was achieved using GS(Generalized Synchronization) method between the transmitter and receiver about each state variable in the SC-CNN. In order to secure communication, we have synthesizing the desired information with a SC-CNN circuit by adding the information signal to the hyper-chaos signal using the SC-CNN in the transmitter. And then, transmitting the synthesized signal to the ideal channel, we confirm secure communication by separating the information signal and the SC-CNN signal in the receiver.

Speech Secure Communication Control System Using Chaos Generation Circuit (카오스 발생회로를 이용한 음성비화통신 제어시스템)

  • 여지환;이익수
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.6 no.2
    • /
    • pp.72-80
    • /
    • 1996
  • 본 논문은 카오스 발생회로(chaos generation circuit)를 설계 및 구현하고, 카오스 회로들간의 카오스 동기화(chaos synchronization) 알고리즘을 기초로 하여 카오스 변조통신을 구성하여 음성비화시스템의 구현에 관하여 실험적으로 검증했다. Pecorra와 Carroll 은 카오스 신호로서 카오스 시스템을 구동하면 카오스 동기화가 가능하다고 발표했다. 이러한 제어기법은 카오스 신호의 마스킹과 복원 알고리즘의 등장을 초래했다. 본 연구는 카오스 신호를 발생하기 위하여 상태변수 기법을 이용하여 로렌쯔(Lorenz) 카오스 발생회로를 하드웨어로 구현했다. 수치 실험 및 보드상의 실험에서 카오스 회로는 카오스의 동적특성을 나타냈으며, 카오스 발생회로들간의 카오스 동기제어를 아루었다. 음성비화를 위한 카오스 신호의 변조는 카오스 신호에 음성신호를 가산하여 송신하며, 광대역)spread spectrum)의 카오스 변조통신 (chaotic modulation communication)에서 음성정보는 수신시스템의 카오스 부시스템에서 카오스 신호를 빼내어 신호를 복원한다. 보드상에서 하드웨어로 구현한 카오스 변.복조 통신시스템을 구성하여 음성신호와 비화통신에 카오스 지능제어기법을 적용하였다.

  • PDF

A Study on Obstacle Avoid Method and Synchronization of multi chaotic robot for Robot Formation Control based on Chaotic Theory (카오스 이론에 기반한 포메이션 제어를 위한 다중 카오스 로봇의 장해물 회피 및 동기화에 관한 연구)

  • Bae, Young-Chul;Park, Jong-Kyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.5 no.5
    • /
    • pp.534-540
    • /
    • 2010
  • In this paper, we propose the mathematical algorithm for collision avoidance between the robots and for the obstacle avoidance during the operation of the several chaotic robotics. For the useful formation control and as one of the method to provide command structure of communication between the robots, we also propose the synchronization method between the robotic system and confirmed the result with the computer simulation.

Synchronization of Non-integer Chaotic Systems with Uncertainties, Disturbances and Input Non-linearities

  • Khan, Ayub;Nasreen, Nasreen
    • Kyungpook Mathematical Journal
    • /
    • v.61 no.2
    • /
    • pp.353-369
    • /
    • 2021
  • In this paper, we examine and analyze the concept of different non-integer chaotic systems with external disturbances, uncertainties, and input non-linearities. We consider both drive and response systems with external bounded disturbances and uncertainties. We also consider non-linear control inputs. For synchronization, we introduce the adaptive sliding mode technique, in which we establish the stability of the controlled system by a control which estimates uncertainties and disturbances, and then applies a suitable sliding surface to control them. We use computer simulations to established the efficacy and adeptness of the prospective scheme.

Comparative Evaluation of Modem Technique in Nonsynchronous Chaos Secure Communication (비동기 카오스 비밀통신의 변복조 기술평가)

  • 최희주;배준호;김성곤;변건식
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.178-182
    • /
    • 2000
  • During the past five years, there has born tremendous interest worldwide in the possibility of exploiting chaos in wideband communication systems. Many different demodulation techniques have been proposed up to date. They can be divided into two basic categories. In the first approach, like the conventional coherent demodulation techniques, the chaotic signal has to be recovered from the received noisy signal by synchronization. However, the chaotic synchronization techniques published to data are so sensitive to the channel noise and distortion that these techniques can not be used in radio communications. In the second approach, the demodulation is carried out nonsynchronization. This paper surveys the different chaotic communication techniques that can be implemented nonsynchronization and compares the threshold and BER of the different methods. Finally, FM-DCSK is introduced the first step for apply to wideband chaos digital CDMA, where the data is not limited by the inherent nonperiodic property of the chaotic signal.

  • PDF

Encryption Communication Protocol Design Using Unidirectional Synchronization of the Chaos System (혼돈계의 단방향 동기화를 이용한 보안 프로토콜 설계)

  • Cho, Chang-Ho;Yim, Geo-Su
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.10
    • /
    • pp.1125-1130
    • /
    • 2014
  • The quantity and quality of contents containing information are sharply increasing with the rising network speed. In line with this rapid growth of information volume, a new communication protocol using the chaotic signal that can protect contents in communication is proposed as follows. The chaos system has the characteristic of unpredictability due to the sensitive initial values and the similarity of the signals with noise. We configured two chaos systems $F(X_n,Y_n)$ and $G(A_n,B_n)$ that have such characteristics and designed a data communication method using as encryption channel the same chaos signals generated by synchronizing the chaos system G with the F signals. The proposed method was verified with the encryption and decryption of images. The proposed method is different from the existing encrypted communication methods and is expected to lay the foundation for future studies in related areas.is an example of ABSTRACT format.

T-S Fuzzy Model-Based Adaptive Synchronization of Chaotic System with Unknown Parameters (T-S 퍼지 모델을 이용한 불확실한 카오스 시스템의 적응동기화)

  • Kim, Jae-Hun;Park, Chang-Woo;Kim, Eun-Tai;Park, Mignon
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.2
    • /
    • pp.270-275
    • /
    • 2005
  • This paper presents a fuzzy model-based adaptive approach for synchronization of chaotic systems which consist of the drive and response systems. Takagi-Sugeno (T-S) fuzzy model is employed to represent the chaotic drive and response systems. Since the parameters of the drive system are assumed unknown, we design the response system that estimates the parameters of the drive system by adaptive strategy. The adaptive law is derived to estimate the unknown parameters and its stability is guaranteed by Lyapunov stability theory. In addition, the controller in the response system contains two parts: one part that can stabilize the synchronization error dynamics and the other part that estimates the unknown parameters. Numerical examples, including Doffing oscillator and Lorenz attractor, are given to demonstrate the validity of the proposed adaptive synchronization approach.