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Abstract. In this paper, we examine and analyze the concept of different non-integer

chaotic systems with external disturbances, uncertainties, and input non-linearities. We

consider both drive and response systems with external bounded disturbances and uncer-

tainties. We also consider non-linear control inputs. For synchronization, we introduce

the adaptive sliding mode technique, in which we establish the stability of the controlled

system by a control which estimates uncertainties and disturbances, and then applies a

suitable sliding surface to control them. We use computer simulations to established the

efficacy and adeptness of the prospective scheme.

1. Introduction

In recent times, non-linear dynamical systems have become a hot topic among
researchers. Discovered by Henri Poincaré [26], chaos is a complex phenomenon
found in most non-linear dynamical systems, describing the sensitive dependence
of the evolution of the system on the initial conditions. Poincaré observed that
two neighboring points in state space can very quickly become isolated. The phe-
nomenon of chaos has deep applications in viscoelasticity [14], dielectric polariza-
tion, electromagnetic waves [9], diffusion, signal processing, mathematical biology
and, of course, chaotic systems. Different procedures have been used to investigate
the behavior of the chaotic non-linear systems that surround us. Among these pro-
cedures are plotting phase portraits, poincaré sections, or bifurcation diagrams, or
finding Lyapunov exponents.

To understand the behaviour of non-linear systems and to stabilize their control,
Pecora and Carroll established the idea of synchronization. Under synchronization,
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trajectories of coupled systems evolve together in a usual pattern. Based on dif-
ferent control techniques such as adaptive backstepping [27], linear and nonlinear
feedback synchronization [3], active control [25], sliding mode control [6], adaptive
sliding mode technique [12], and time delay feedback [5], researchers have devel-
oped many synchronization schemes– schemes such as complete and anti synchro-
nization [10, 21], phase and anti-phase synchronization [20], projective and hybrid
function projective synchronization [13,22], generalised synchronization [28].

To combine the concept of integer order differentiation and n-fold integration,
Leibnitz and L’Hospital in 1675 gave the theory of integrals and derivatives of ar-
bitrary order. Systems represented by non-integer differential equations [23] have
been studied extensively in recent years. These studies focus on real-life systems
and have many multidisciplinary applications. Specifically, it has been seen that
non-integer systems, which generalize many well-known integer order systems, have
chaotic and hyper-chaotic behavior. Some such systems are Lorenz systems [8],
Chen systems, Rössler systems [15], Liu-systems [6], Genesio-Tesi systems [7], Chua
systems [29], complex t-system [19] and complex Lu-systems [24].

In this manuscript, we synchronize two different non-integer chaotic systems.
We treat a non-integer chaotic Liu-system [6] as drive a system, and a chaotic
Genesio-Tesi system [7] as response a system. We do so with model uncertainties,
and external bounded disturbances, but also with non-linear input. The consider-
tion of these elements together seems to be novel in the literature. As uncertainties
and disturbances introduce a dreadful change in chaotic systems, dynamics, and
synchronization reduce this. Researchers have introduced various schemes [4, 12]
to examine the synchronization of chaotic systems with various disturbances and
uncertainties. Generally the sliding mode control technique is an efficient approach
for dealing with uncertainties and disturbances.

In practice when we encounter a controller in a real-life systems, physical lim-
itations cause some non-linearity in the control inputs. It has been shown that
non-linear input can cause a severe decay in the system performance. If the con-
troller is poorly designed, then system failure becomes worse. Therefore, non-linear
input effects must be taken into consideration when evaluating and implementing a
control scheme for chaotic systems. Researchers have designed various techniques
to synchronize integer-order chaotic systems with non-linear inputs [2,16]. It seems,
however, synchronization among non-integer chaotic systems in the presence of ex-
ternal disturbances, model uncertainties and non-linear input has not been discov-
ered. In our paper, we investigate the synchronization under these perturbations.
We introduce an adaptive sliding mode control scheme to synchronize the consid-
ered systems. We estimated the disturbances and uncertainties through a adaptive
control rule and we chose a suitable sliding surface to counter their effect. We design
the appropriate controllers using known control techniques and Lyapunov stability
theory.

As motivated above, we summarize here the main aspects of the this paper.

1. We propose a novel synchronization scheme for non-integer chaotic systems.
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2. We design non-linear control inputs for non-integer chaotic systems.

3. We compare our proposed methodology with the previously published liter-
ature. We consider disturbances, uncertainties, and non-linear input. Even
with this, our methodology yields better results than the previously pub-
lishedliterature.

4. We ilustrate an application in secure communication in Section 5.

5. We use numerical simulations to validate and visualize our results.

2. Preliminaries and Problem Formulation

The fractional order derivative can be defined in various forms [23] such as
Riemann-Lioville’s derivative, Grünwald Letnikov’s derivative, Caputo’s derivative.
Here we have taken Caputo’s derivative defined as

t0D
α
t f(t) =

1

Γ(n− α)

∫ t

t0

f (n)(τ)

(t− τ)α−n+1
dτ, t > t0

where α ∈ R+ and Γ(.) is the Gamma function.
Consider the drive system of n dimensions with model uncertainties and external

disturbances

(2.1) Dαui = fi(u1, u2....un) + ∆fi(u1, u2....un, t) + di(t)

for i = 1, . . . , n, where u(t) = [u1, u2, ...., un]T ∈ Rn are state variables of the system
(2.1), fi(u) : Rn×1 → R, are continuous functions, ∆fi(u) are model uncertainties
and di(t) are external disturbances for i = 1, 2, 3, ..., n.

Consider the response system of n dimensions with model uncertainties, external
disturbances, and non-linear control inputs as

(2.2) Dαvi = gi(v1, v2....vn) + ∆gi(v1, v2....vn, t) + d′i(t) + Φi(Ui)

for i = 1, . . . , n, where v(t) = [v1, v2, ...., vn]T ∈ Rn are state variables of the system
(2.2), gi(v) : Rn×1 → R are continuous functions, ∆gi(v) are model uncertainties,
d′i(t) are external disturbances, and Φi(Ui) are the non-linear control inputs for
controller Ui i = 1, 2, 3, ..., n.

Assumption 1. The trajectories of non-integer chaotic systems are bounded so
here we have assumed that the model uncertainties ∆fi(u) and ∆gi(v) are bounded.
This implies that there exist constants ϑmi > 0 and ϑsi > 0 such that

|∆fi(u)| < ϑmi and |∆gi(v)| < ϑsi .

Consequently we have

|∆fi(u)−∆gi(v)| < ϑi
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for i = 1, 2, ..., n.

Assumption 2. It is assumed that if external disturbances di(t) and d′i(t) are norm
bounded then there exist constants νmi > 0 and νsi > 0 such that

|di(t)| < νmi and |gi(v)| < νsi .

Thus for i = 1, 2, ..., n, we get

|∆fi(u)−∆gi(v)| < νi.

Assumption 3. The control inputs Φi(Ui) are continuous non-linear functions and
satisfy

ωiU
2
i ≤ UiΦi(Ui) ≤ ηiU2

i

where i = 1, 2, ..., n and ωi, η > 0 are constant parameters.
In order to achieve synchronization, here we define synchronization error as

ei = ui − vi, for i = 1, 2, ...., n. The error dynamics is attained as

Dαei = gi(v1, v2....vn) + ∆gi(v1, v2....vn, t) + d′i(t)

− fi(u1, u2....un)−∆fi(u1, u2....un, t)− di(t) + Φi(Ui)(2.3)

for i = 1, . . . , n.

To achieve synchronization, we have to establish that the error system (2.3) is
stable. For that our aim is to design control laws for any two non-integer chaotic
systems with model uncertainties, external disturbances, and non-linear input to
established that it is stable asymptotically: limt→∞ ‖ ei(t) ‖= 0, i = 1, 2, ...., n.

To minimize the error, we choose the suitable sliding surface which is as follows:

(2.4) si(t) = µiD
α−1ei(t) +

∫ t

0

ei(ξ)dξ

where s(t) ∈ R, s(t) = [s1, s2, ..., sn]T and the sliding surface parameters µi, i =
1, 2, .., n are chosen in such a manner that they are positive.

To discuss the error system (2.3) at the chosen sliding surface (2.4), it is neces-
sary that it should satisfy the following condition for i = 1, 2, .., n

(2.5) si(t) = 0, ṡi(t) = 0

The derivative of (2.4) yields the following equation

(2.6) ṡi(t) = µiD
αei(t) + ei(t)

Then, by considering the necessary condition ṡi(t) = 0, we obtain

(2.7) Dαei(t) = − 1

µi
ei(t)
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Hence, the system (2.3) is asymptotically stable which shows that the slave sys-
tem (2.2) can be tackled by the master system (2.1) by constructing the appropriate
control inputs.

Our next step is to design the appropriate control inputs in order to stabilize
the error system and attain synchronization on the chosen sliding surface s(t) = 0.
The control inputs are designed as follows

Ui =

[
1

ωi

(
1

µi
|ei|+ |gi − fi|+ ϑ̂i + ν̂i + λi

)]
sign(si) = ζisign(si)(2.8)

where ϑ̂i and ν̂i are estimates of ϑi and νi respectively and λi are switching gain.
The adaptive laws are chosen as

˙̂
ϑi = ˙̂νi = µi|si|, i = 1, 2, .., n.(2.9)

Theorem 2.1. For the error system (2.3) with control laws (2.8) and adaptive laws
(2.9), if the following condition is fulfilled:

(2.10) (µiηi − λi) < 0,

then the synchronization error converges to si = 0. Thereby the synchronization
between (2.1) and (2.2) can be achieved.

Proof. Consider the Lyapunov function given as

Vi =
1

2

N∑
i=1

[s2i + (ϑ̂i − ϑi)2 + (ν̂i − νi)2]

The derivative of Vi is

V̇i =

N∑
i=1

[siṡi + (ϑ̂i − ϑi) ˙̂
ϑi + (ν̂i − νi) ˙̂νi]

By substituting the value of ṡi,

V̇i =

N∑
i=1

[si(µiD
αei(t) + ei(t)) + (ϑ̂i − ϑi) ˙̂

ϑi + (ν̂i − νi) ˙̂νi]

Using adaptive laws (2.9) and substituting the values of Dαei(t), we obtain

V̇i =

N∑
i=1

[si(µi(gi + ∆gi + d′i(t)− fi −∆fi − di(t) + Φi(Ui)) + ei(t))

+ (ϑ̂i − ϑi)(µi|si|) + (ν̂i − νi)(µi|si|)]
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Using Assumption (2) Φi(Ui) ≤ ηiUi and −siϕi(Ui) ≤ −ωζi|si|, where Ui =
ζisign(si) and (2.3), we have

V̇i ≤
N∑
i=1

[si(µi(gi + ∆gi + d′i(t)− fi −∆fi − di(t) + Φi(Ui)) + µiηi + ei(t))

+ (ϑ̂i − ϑi)(µi|si|) + (ν̂i − νi)(µi|si|)]

≤
N∑
i=1

[|si||ei|+ |si|µiηi + |si|µi|gi − fi| − siµiΦi(Ui)

+ ϑ̂iµi|si|+ ν̂iµi|si|]

≤
N∑
i=1

[|si||ei|+ |si|µiηi + |si|µi|gi − fi| − µiωζi|si|

+ ϑ̂iµi|si|+ ν̂iµi|si|]

Substituting ζi =
1

ωi

(
1

µi
|ei|+ |gi − fi|+ ϑ̂i + ν̂i + λi

)
into the above inequal-

ity:

V̇i ≤
N∑
i=1

[|si||ei|+ |si|µiηi + |si|µi|gi − fi|

− µiω
1

ωi

(
1

µi
|ei|+ |gi − fi|+ ϑ̂i + ν̂i + λi

)
|si|+ ϑ̂iµi|si|

+ ν̂iµi|si|]

Using equations (2.8), (2.9) and (2.10) and simplifying, we get the following
inequality:

V̇i ≤
N∑
i=1

[(µiηi − λi)|si|]

=

N∑
i=1

[−(λi − µiηi)|si|]

=

N∑
i=1

[−Θi|si|]

= −Θi|si| = Ωi(ξ) ≤ 0.

Integrating the above equation from 0 to t yields

Vi(0) ≥ Vi(t) +

∫ t

0

Ωi(ξ)dξ.
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Fig.1: Phase Portraits of fractional order Liu chaotic system for α = 0.95

(a)u2 − u1 axis (b)u2 − u3 axis (c)u3 − u1 axis (d)u1 − u2 − u3 axis.

Since V̇i(t) < 0, Vi(0) − Vi(t) ≥ 0 is positive and finite, the limit limt→∞ Ωi(ξ)
exists and is finite (i.e. limt→∞Ωi(ξ) = Vi(0)− Vi(t) ≥ 0). Using the Barbalat

Lemma ([11, lemma 8.2]), limt→∞
∫ t
0

Ωi(ξ)dξ = 0, which implies |si| = 0. Thus
the error dynamical system is asymptotically stable. Hence, synchronization is
achieved between non-integer chaotic systems on the considered stationary surface.
This completes the proof. 2

Remark 2.2.([1, 17]) The signum function behaves as a rigid switcher in the
prospective control law and it can cause chattering. Therefore, we modify the
controller to prevent chattering:

(2.11) Ui =

[
1

ωi

(
1

µi
|ei|+ |gi − fi|+ ϑ̂i + ν̂i + λi

)]
tanh(δisi)

where δi > 0 is a constant.



360 A. Khan and Nasreen

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

v
1

v 2

(a)

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

v
2

v 3

(b)

−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

v
1

v 3

(c)

−0.4
−0.2

0
0.2

0.4
0.6

0.8
1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

v
1

v
2

v 3

(d)

Fig.2: Phase Portraits of fractional order Genesio-Tesi chaotic system for

α = 0.95 (a) v1 − v2 axis (b) v2 − v3 axis (c)v1 − v3 axis (d)v1 − v2 − v3 axis.

Remark 2.3. After substituting the controller (2.11) into V̇i for error dynamical
system (2.3), we have

V̇i ≤
N∑
i=1

[(µiηi − λi)tanh(δisi)].

Using condition (2.10) and (µiηi − λi)|tanh(δisi)| ≤ 0, we have

V̇i ≤
N∑
i=1

[(µiηi − λi)|tanh(δisi)||si|] ≤ 0.

Using Theorem 2.1 together with the Barbalat Lemma, we obtain |si| = 0
subsequently the error system is stable with controllers (2.11) and adaptive laws
(2.9).
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3. Illustration Example

To check the applicability and efficacy of the proposed control scheme, we con-
sider the following two different non-integer chaotic systems:

Drive system [6]

Dαu1 = −au1 − eu22 + 0.1 cosπu1 + 0.5 sin t

Dαu2 = bu2 − ku1u3 + 0.1 cos 2πu2 + 0.5 sin t(3.1)

Dαu3 = −cu3 +mu1u2 + 0.1 cos 3πu3 + 0.5 sin t

where u1, u2, u3 are state variables. The parameters a, b, c, d, and e are non-negative
constants. For the parameter values a = 1,m = 4, b = 2.5, c = 5, e = 1, k =
4,m = 4, initial conditions (u1(0), u2(0), u3(0)) = (0.2, 0, 0.5)., and fractional order
α = 0.95 the system (3.1) exhibits chaotic behaviour, as seen in Fig.1.

The uncertainties and disturbances for the drive system are taken as

∆fi = 0.1 cos(iπui) and di = 0.5 sin t

for i = 1, 2, 3.

Response system [7]

Dαv1 = v2 − 0.1 cosπv1 − 0.5 sin t+ Φ1(U1)

Dαv2 = v3 − 0.1 cos 2πv2 − 0.5 sin t+ Φ2(U2)(3.2)

Dαv3 = −fv1 − gv2 − hv3 + iv21 − 0.1 cos 3πv3 − 0.5 sin t+ Φ3(U3)

where v1, v2, v3 are state variables. Parameters f, g, h, and i are non-negative con-
stants. For the parameter values f = 1, g = 1.1, h = 0.4, i = 1 and initial conditions
(v1(0), v2(0), v3(0)) = (−0.3, 0.1,−0.2). and for fractional order α = 0.95 the system
(3.2) shows the chaotic behaviour in Fig.2.

The uncertainties and disturbances for response system are taken as

∆fi = −0.1 cos(iπvi) and di = −0.5 sin t

for i = 1, 2, 3.

The non-linear control inputs are taken as Φi(Ui) = [5 + 3 sin t]Ui. Also, it is
assumed that ωi = 1, ηi = 4.

The error dynamical system can be written as

Dαe1(t) =− au1 − eu22 + 0.1 cosπu1 + 0.5 sin t− v2 + 0.1 cosπv1

+ 0.5 sin t− Φ1(U1)

Dαe2(t) = bu2 − ku1u3 + 0.1 cos 2πu2 + 0.5 sin t− v3 + 0.1 cos 2πv2(3.3)

+ 0.5 sin t− Φ2(U2)

Dαe3(t) =− cu3 +mu1u2 + 0.1 cos 3πu3 + 0.5 sin t+ fv1 + gv2

+ hv3 − iv21 + 0.1 cos 3πv3 + 0.5 sin t− Φ3(U3)
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Fig.3: Synchronized state trajectories which are synchronized at time t=2

unit(approx.)(a)u1 − v1 (b)u2 − v2 (c)u3 − v3

Choosing a suitable sliding surface (2.4) using control law (2.11) and adaptive
law (2.9), we take µi = 0.1, λi = 0.5 and δi = 200. This yields (µiηi − λi) =
0.1 ∗ 4− 0.5 = −0.1 < 0.

Using Theorem 2.1 and (2.11), we get the following control laws.

U1 = [10|e1|+ | − au1 − eu22 − v2|+ ϑ̂1 + ν̂1 + 0.5] tanh(200s1)

U2 = [10|e2|+ |bu2 − ku1u3 − v3|+ ϑ̂2 + ν̂2 + 0.5] tanh(200s2)(3.4)

U3 = [10|e3|+ | − cu3 +mu1u2 + fv1 + gv2 + hv3 − iv21 |

+ ϑ̂3 + ν̂3 + 0.5] tanh(200s3)

For the systems (3.1) and (3.2) take (u1(0), u2(0), u3(0)) = (0.2, 0, 0.5) and

(v1(0), v2(0), v3(0)) = (−0.3, 0.1,−0.2). Also take ϑ̂1(0) = 0.1, ϑ̂2(0) = 0.1, ϑ̂3(0) =
0.1 and ν̂1(0) = 0.1, ν̂2(0) = 0.1, ν̂3(0) = 0.1.

Figures 1 and 2 show the phase portraits of system (3.1) and (3.2). Figure 3
shows the synchronized state trajectories of system (3.1) and (3.2). Figure 4 shows
the synchronized error and that the sliding surface converges to zero at approxi-
mately time t = 2 seconds. Figure 5 shows the estimated values of uncertainties
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Fig.4: (a) Synchronization error (b) sliding surface converging to zero at time

t=2 unit(approx.).
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Fig.6: Synchronization Error for integer order Liu system and Genesio-Tesi

system.
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Fig.7: Synchronization Error for two identical non-integer Genesio-Tesi system.

and disturbance bounds.

4. Comparison of the Proposed Scheme with the Previous Published
Literature

1. First of all, we compared our synchronization result to the integer-order Liu
system and Genesio-Tesi system for the same set of parameter values and initial
conditions. For α = 1, synchronization was achieved at approximately t = 15
seconds. as seen in Fig.6. Therefore, from Fig.4(a) and Fig.6, we see that our
scheme gives better results for non-integer chaotic systems.

2. In [6], the author adopted the active control and sliding mode control methods
to analyse the complete synchronization between two identical non-integer Genesio
Tesi systems with parameter values a = 6, b = 2.92, c = 1.2 & d = 1, initial con-
ditions (x1(0), x2(0), x3(0)) = (0.3, 0.7, 1.2), (y1(0), y2(0), y3(0)) = (0.1,−0.3,−0.7)
and α = 0.97. The author achieved synchronization with the active control method
at approximately t = 20, and with the sliding mode method at time t = 15. When
we implemented our proposed methodology for the same systems with same set
of parameter values and initial conditions in the presence of a set of disturbances,
uncertainties, and non-linear input, we achieve synchronization at time t = 4, as
shown in Fig.7.

3. In [18], the complete synchronization between two identical non-integer Genesio-
Tesi systems with fifth order non-linearity based on the adaptive control method
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Fig.8: Synchronization Error for two identical non-integer Genesio-Tesi system

with fifth order non-linearity.

0 1 2 3 4 5 6 7 8 9 10
−20

−15

−10

−5

0

5

10

15

20

25

t

S
yn

ch
ro

ni
za

tio
n 

E
rr

or

 

 

e
1

e
2

e
3

Fig.9: Synchronization Error for two identical non-integer Genesio-Tesi system.

was studied with parameter values β1 = −2, β2 = 3.5, β3 = 0.3 & β4 = −1, initial
conditions (x1(0), x2(0), x3(0)) = (−0.2, 0.5, 0.2), (y1(0), y2(0), y3(0)) = (0.5, 1,−1)
and α = 0.95. They achieved synchronization at time t = 75. Our scheme for the
same systems with same parameter values and initial conditions in the presence of
disturbances, uncertainties, and input non-linearities, achieves synchronization at
time t = 4, as shown in Fig.8.

4. In Section 4 of [25], the author anti-synchronized two identical non-integer
Genesio-Tesi systems using the active control method with parameter values a =
6, b = 2.92, c = 1.2 & m = 1, initial conditions (x1(0), x2(0), x3(0)) = (2,−3, 4),
(y1(0), y2(0), y3(0)) = (−1, 6,−6) and α = 0.95. Anti-syncronization occured at
time t = 6. When we applied our proposed scheme for the systems in [26] with
same parameter values and initial conditions in the presence of disturbances, un-
certainties and input non-linearities, we achieves synchronization at time t = 3.5,
as shown in Fig.9.

5. In Section 5 of [25], the author anti-synchronized a non-integer Genesio-Tesi
system and a Qi system using the active control method with parameter values
a = 6, b = 2.92, c = 1.2,m = 1, p = 35, q = 8/3, & r = 80 initial conditions
(x1(0), x2(0), x3(0)) = (−2, 3, 5), (y1(0), y2(0), y3(0)) = (−1,−1,−2) and α = 0.96.
They acheived anti-synchronization at time t = 8. When we adopted our scheme
for the same with same parameter values and initial conditions in the presence of
disturbances, uncertainties, and input non-linearities, we achieved synchronization
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Fig.10: synchronization Error for non-integer Genesio-Tesi system and Qi-system.

at time t = 1, as shown in Fig.10.

Our methodology significantly beats published liturature in these settings.

5. Application to Secure Communication

Non-integer, chaotic systems have applications in many fields, such as physics,
chemical science, and secure communication. In this manuscript, we show an ap-
plication in secure communication.

Here we take a simple additive encryption masking scheme, to validate our
proposed scheme.

The information input signal is selected as IS = sin t+ cos t and u3 is a chaotic
carrier. The chaotic encrypted signal CS = IS + u3. The original input infor-
mation signal is regained by our proposed methodology– the decrypted signal is
DS = CS − v3. The results are shown in Fig. 11.

6. Conclusion

In this paper, a robust adaptive sliding mode technique has been used to achieve
synchronization between two different fractional-order chaotic systems with model
uncertainties, external disturbances, and non-linear inputs. Synchronization of non-
integer chaotic systems in the presence of uncertainties, disturbances and non-linear
control inputs has not been examined in the prior literature. We synchronized non-
integer chaotic Liu-system and Genesio-Tesi systems. We chose a suitable sliding
surface and estimated the bounded uncertainties and disturbances using update
laws to achieve the desired synchronization and reduce the consequence of external
uncertainties and disturbances and non-linear input. Then, using the considered
control scheme and Lyapunov stability theory, we designed appropriate controllers.
Although we have taken non-integer chaotic systems with uncertainties, distur-
bances, and non-linearities, we get better synchronization results. This scheme
should perform a significant role to enhance security in communications. Compu-
tational methods were used to evaluate the efficiency of the considered scheme.
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