• 제목/요약/키워드: Channel doping

검색결과 243건 처리시간 0.028초

나노 스케일 MuGFET의 소자 구조 최적화에 관한 연구 (A study on the device structure optimization of nano-scale MuGFETs)

  • 이치우;윤세레나;유종근;박종태
    • 대한전자공학회논문지SD
    • /
    • 제43권4호
    • /
    • pp.23-30
    • /
    • 2006
  • 본 연구에서는 나노 스케일 MuGFET(Mutiple-Gate FETs)의 단채널 효과와 corner effect를 3차원 시뮬레이션을 통하여 분석하였다. 문턱전압 모델을 이용하여 게이트 숫자(Double-gate=2, Tri-gate=3, Pi-gate=3.14, Omega-gate=3.4, GAA=4)를 구하였으며 추출된 게이트 숫자를 이용하여 각각의 소자 구조에 맞는 natural length($\lambda$)값을 얻을 수 있었다. Natural length를 통하여 MuGFET의 단채널 효과를 피할 수 있는 최적의 소자 구조(실리콘 두께, 게이트 산화막의 두께 등)를 제시 하였다. 이러한 corner effect를 억제하기 위해서는 채널 불순물의 농도를 낮게 하고, 게이트 산화막의 두께를 얇게 하며, 코너 부분을 약 17%이상 라운딩을 해야 한다는 것을 알 수 있었다.

MOSFET에서 다결정 실리콘 게이트 막의 도핑 농도가 신뢰성에 미치는 영향 (Effects of Doping Concentration of Polycrystalline Silicon Gate Layer on Reliability Characteristics in MOSFET's)

  • 박근형
    • 한국전기전자재료학회논문지
    • /
    • 제31권2호
    • /
    • pp.74-79
    • /
    • 2018
  • In this report, the results of a systematic study on the effects of polycrystalline silicon gate depletion on the reliability characteristics of metal-oxide semiconductor field-effect transistor (MOSFET) devices were discussed. The devices were fabricated using standard complimentary metal-oxide semiconductor (CMOS) processes, wherein phosphorus ion implantation with implant doses varying from $10^{13}$ to $5{\times}10^{15}cm^{-2}$ was performed to dope the polycrystalline silicon gate layer. For implant doses of $10^{14}/cm^2$ or less, the threshold voltage was increased with the formation of a depletion layer in the polycrystalline silicon gate layer. The gate-depletion effect was more pronounced for shorter channel lengths, like the narrow-width effect, which indicated that the gate-depletion effect could be used to solve the short-channel effect. In addition, the hot-carrier effects were significantly reduced for implant doses of $10^{14}/cm^2$ or less, which was attributed to the decreased gate current under the gate-depletion effects.

Analysis of Flat-Band-Voltage Dependent Breakdown Voltage for 10 nm Double Gate MOSFET

  • Jung, Hakkee;Dimitrijev, Sima
    • Journal of information and communication convergence engineering
    • /
    • 제16권1호
    • /
    • pp.43-47
    • /
    • 2018
  • The existing modeling of avalanche dominated breakdown in double gate MOSFETs (DGMOSFETs) is not relevant for 10 nm gate lengths, because the avalanche mechanism does not occur when the channel length approaches the carrier scattering length. This paper focuses on the punch through mechanism to analyze the breakdown characteristics in 10 nm DGMOSFETs. The analysis is based on an analytical model for the thermionic-emission and tunneling currents, which is based on two-dimensional distributions of the electric potential, obtained from the Poisson equation, and the Wentzel-Kramers-Brillouin (WKB) approximation for the tunneling probability. The analysis shows that corresponding flat-band-voltage for fixed threshold voltage has a significant impact on the breakdown voltage. To investigate ambiguousness of number of dopants in channel, we compared breakdown voltages of high doping and undoped DGMOSFET and show undoped DGMOSFET is more realistic due to simple flat-band-voltage shift. Given that the flat-band-voltage is a process dependent parameter, the new model can be used to quantify the impact of process-parameter fluctuations on the breakdown voltage.

Comparison of Drain-Induced-Barrier-Lowering (DIBL) Effect by Different Drain Engineering

  • Choi, Byoung-Seon;Choi, Pyung-Ho;Choi, Byoung-Deog
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.342-343
    • /
    • 2012
  • We studied the Drain-Induced-Barrier-Lowering (DIBL) effect by different drain engineering. One other drain engineering is symmetric source-drain n-channel MOSFETs (SSD NMOSs), the other drain engineering is asymmetric source-drain n-channel MOSFETs (ASD NMOSs). Devices were fabricated using state of art 40 nm dynamic-random-access-memory (DRAM) technology. These devices have different modes which are deep drain junction mode in SSD NMOSs and shallow drain junction mode in ASD NMOSs. The shallow drain junction mode means that drain is only Lightly-Doped-Drain (LDD). The deep drain junction mode means that drain have same process with source. The threshold voltage gap between low drain voltage ($V_D$=0.05V) and high drain voltage ($V_D$=3V) is 0.088V in shallow drain junction mode and 0.615V in deep drain junction mode at $0.16{\mu}m$ of gate length. The DIBL coefficients are 26.5 mV/V in shallow drain junction mode and 205.7 mV/V in deep drain junction mode. These experimental results present that DIBL effect is higher in deep drain junction mode than shallow drain junction mode. These results are caused that ASD NMOSs have low drain doping level and low lateral electric field.

  • PDF

Approach to High Stable Oxide Thin-Film Transistors for Transparent Active Matrix Organic Light Emitting Devices

  • Cheong, Woo-Seok;Lee, Jeong-Min;Jeong, Jae-Kyeong;KoPark, Sang-Hee;Yoon, Sung-Min;Cho, Doo-Hee;Ryu, Min-Ki;Byun, Chun-Won;Yang, Shin-Hyuk;Chung, Sung-Mook;Cho, Kyoung-Ik;Hwang, Chi-Sun
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.382-384
    • /
    • 2009
  • In this study, high stable oxide thin-film transistors (TFTs) have been developed by using several approaching techniques, which including a change of the channel composition ratio in multi-component oxide semiconductors, a change of TFT structure with interfacial dielectric layers, a control of interface roughness, a channel-doping method, and so on.

  • PDF

ZnO Power FET 모델링에 관한 연구 (Study on Modeling of ZnO Power FET)

  • 강이구;정헌석
    • 전기전자학회논문지
    • /
    • 제14권4호
    • /
    • pp.277-282
    • /
    • 2010
  • 본 논문에서는 차세대 전력반도체인 화합물 반도체 소자중 ZnO 전력소자에 대하여 모델링을 수행하였다. 화합물 전력 반도체 소자는 와이드 밴드 갭 소자로서 열 특성이 우수해 자동차 및 계통연계형 인버터의 차세대 핵심소자로 인정받고 있다. 모델링 결과 에피 두께가 3um, 도핑농도는 $1e17cm^{-3}$일때 내압 340V 정도 얻을 수 있었으며, 관련 I-V특성 등을 평가하였다. 실제 소자로 제작된다면 300V이내의 산업 응용에 충분히 활용할 수 있을 것으로 판단된다

비정질 하프늄인듐징크옥사이드 산화물 반도체의 공정 파워에 따른 트랜지스터의 전기적 특성 연구 (Study on the Electrical Properties of Amorphous HfInZnO TFTs Depending on Sputtering Power)

  • 유동윤;정유진;김도형;주병권;이상렬
    • 한국전기전자재료학회논문지
    • /
    • 제24권8호
    • /
    • pp.674-677
    • /
    • 2011
  • The dependency of sputtering power on the electrical performances in amorphous HIZO-TFT (hafnium-indium-zinc-oxide thin film transistors) has been investigated. The HIZO channel layers were prepared by using radio frequency (RF) magnetron sputtering method with different sputtering power at room temperature. TOF-SIMS (time of flight secondary ion mass spectrometry) was performed to confirm doping of hafnium atom in IZO film. The field effect mobility (${\mu}FE$) increased and threshold voltage ($V_{th}$) shifted to negative direction with increasing sputtering power. This result can be attributed to the high energy particles knocking-out oxygen atoms. As a result, oxygen vacancies generated in HIZO channel layer with increasing sputtering power resulted in negative shift in Vth and increase in on-current.

Characterization of Ultra Low-k SiOC(H) Film Deposited by Plasma-Enhanced Chemical Vapor Deposition (PECVD)

  • Kim, Sang-Yong
    • Transactions on Electrical and Electronic Materials
    • /
    • 제13권2호
    • /
    • pp.69-72
    • /
    • 2012
  • In this study, deposition of low-dielectric constant SiOC(H) films by conventional plasma-enhanced chemical vapor deposition (PECVD) were investigated through various characterization techniques. The results show that, with an increase in the plasma power density, the relative dielectric constant (k) of the deposited films decreases whereas the refractive index increases. This is mainly due to the incorporation of organic molecules with $CH_3$ group into the Si-O-Si cage structure. It is as confirmed by FT-IR measurements in which the absorption peak at 1,129 $cm^{-1}$ corresponding to Si-O-Si cage structure increases with power plasma density. Electrical characterization reveals that even after fast thermal annealing process, the leakage current density of the deposited films is in the order of $10^{-11}$ A/cm at 1.5 MV/cm. The reliability of the SiOC(H) film is also further characterized by using BTS test.

저전압 VDMOS 의 ON-저항 모델링 (An Advanced On-Resistance Model for Low Voltage VDMOS)

  • 김성동;김일중;최연익;한민구
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1991년도 하계학술대회 논문집
    • /
    • pp.166-170
    • /
    • 1991
  • An advanced on-resistance model of VDMOS devices in the low voltage regime is proposed and verified by 2-D device simulations. The model considers the lateral gaussian doping profiles in the channel region and exact current spreading angles in the epitaxial layer for both linear and cellular geometries by employing the conformal mapping. It is found out that the on-resistance of low voltage VDMOS may be overestimated considerably if it is analyzed by the conventional method. The 2-D device simulation results show that the proposed model is valid for all ranges of cell spacings and breakdown voltages.

  • PDF

Effect of Electric Field Frequency on the AC Electrical Treeing Phenomena in an Epoxy/Reactive Diluent/Layered Silicate Nanocomposite

  • Park, Jae-Jun
    • Transactions on Electrical and Electronic Materials
    • /
    • 제15권2호
    • /
    • pp.87-90
    • /
    • 2014
  • The effects of electric field frequency on the ac electrical treeing phenomena in an epoxy/reactive diluent/layered silicate (1.5 wt%) were carried out, in needle-plate electrode arrangement. A layered silicate was exfoliated in an epoxy base resin, by using our ac electric field apparatus. To measure the treeing propagation rate, constant alternating current (AC) of 10 kV with three different electric field frequencies (60, 500 and 1,000 Hz) was applied to the specimen, in needle-plate electrode arrangement, at $30^{\circ}C$ of insulating oil bath. As the electric field frequency increased, the treeing propagation rate increased. At 500 Hz, the treeing propagation rate of the epoxy/PG/nanosilicate system was $0.41{\times}10^{-3}$ mm/min, which was 3.4 times slower than that of the epoxy/PG system. The electrical treeing morphology was dense bush type at 60 Hz; however, as the frequency increased, the bush type was changed to branch type, having few branches, with very slow propagation rate.