Browse > Article
http://dx.doi.org/10.4313/TEEM.2014.15.2.87

Effect of Electric Field Frequency on the AC Electrical Treeing Phenomena in an Epoxy/Reactive Diluent/Layered Silicate Nanocomposite  

Park, Jae-Jun (Department of Electrical and Electronic Engineering, Joongbu University)
Publication Information
Transactions on Electrical and Electronic Materials / v.15, no.2, 2014 , pp. 87-90 More about this Journal
Abstract
The effects of electric field frequency on the ac electrical treeing phenomena in an epoxy/reactive diluent/layered silicate (1.5 wt%) were carried out, in needle-plate electrode arrangement. A layered silicate was exfoliated in an epoxy base resin, by using our ac electric field apparatus. To measure the treeing propagation rate, constant alternating current (AC) of 10 kV with three different electric field frequencies (60, 500 and 1,000 Hz) was applied to the specimen, in needle-plate electrode arrangement, at $30^{\circ}C$ of insulating oil bath. As the electric field frequency increased, the treeing propagation rate increased. At 500 Hz, the treeing propagation rate of the epoxy/PG/nanosilicate system was $0.41{\times}10^{-3}$ mm/min, which was 3.4 times slower than that of the epoxy/PG system. The electrical treeing morphology was dense bush type at 60 Hz; however, as the frequency increased, the bush type was changed to branch type, having few branches, with very slow propagation rate.
Keywords
Metal-oxide-semiconductor field-effect transistor; lateral asymmetric channel doping;
Citations & Related Records
연도 인용수 순위
  • Reference
1 D. J. Suh and O. O. Park, J. Appl. Polym. Sci., 83, 2143 (2002) [DOI: http://dx.doi.org/10.1002/app.10166].   DOI   ScienceOn
2 L . Zhang, Y. Z. Wang, Y. Q. Wang, Y. Sui and D. S. Yu, J. Appl. Polym. Sci., 78, 1873 (2000) [DOI: http://dx.doi.org/10.1002/1097-4628(20001209)].   DOI
3 N. Artzi, Y. Nir, M. Narkis and A. Siegmann, J. Polym. Sci.: Part B, 40, 1741 (2002) [DOI: http://dx.doi.org/10.1002/polb.10236].   DOI   ScienceOn
4 H. L. Tyan, K. H. Wei and T. E. Hsieh, J. Polym. Sci.: Part B, 38, 2873 (2000) [DOI: http://dx.doi.org/10.1002/1099-0488(20001115)].   DOI   ScienceOn
5 J. Y. Lee, M. J. Shim and S. W. Kim, Polym. Eng. Sci., 39, 1993 (1999) [DOI: http://dx.doi.org/10.1002/pen.11592].   DOI
6 Y. S. Cho, M. J. Shim and S. W. Kim, Mater. Chem. Phys., 66, 70 (2000) [DOI: http://dx.doi.org/10.1016/S0254-0584(00)00272-8].   DOI   ScienceOn
7 R. Sarathi, R. K. Sahu and P. Rajeshkumar, Mater. Sci. Eng.: A, 445, 567 (2007) [DOI: http://dx.doi.org/10.1016/j.msea.2006.09.077].   DOI   ScienceOn
8 T. Tanaka, G. C. Montanari and R. Mulhaupt, IEEE Trans. Dielectr. Electr. Insul., 11, 763 (2004) [DOI: http://dx.doi.org/10.1109/TDEI.2004.1349782].   DOI   ScienceOn
9 T. Imai, F. Sawa, T. Yoshimitsu, T. Ozaki, and T. Shimizu, IEEE Annual Report Conference on CEIDP, p.239 (2004).
10 T. Tanaka, IEEE Transactions on Dielectrics and Electrical Insulation, 9, 704 (2002) [DOI: http://dx.doi.org/10.1109/TDEI.2002.1038658].   DOI   ScienceOn
11 R. Vogelsan, T. Farr, and K. Frohlich, IEEE Transactions on Dielectrics and Electrical Insulation, 13, 373 (2006) [DOI: http://dx.doi.org/10.1109/TDEI.2006.1624282].   DOI   ScienceOn
12 J. J. Park and J. Y. Lee, IEEE Trans. Dielectr. Electr. Insul. 17, 1516 (2010) [DOI: http://dx.doi.org/10.1109/TDEI.2010.5595553].   DOI   ScienceOn
13 K. Theodosiou and I. Gialas, J. Electr. Eng., 59, 248 (2008).
14 K. Varlot, E. Reynaud, M. H. Kloppfer, G. Vigler and J. Varlet, J. Polym. Sci.: Part B, 39, 1360 (2001) [DOI: http://dx.doi.org/10.1002/polb.1108].   DOI