• Title/Summary/Keyword: Cell interconnection

Search Result 83, Processing Time 0.034 seconds

Pre-Natal Epigenetic Influences on Acute and Chronic Diseases Later in Life, such as Cancer: Global Health Crises Resulting from a Collision of Biological and Cultural Evolution

  • Trosko, James E.
    • Preventive Nutrition and Food Science
    • /
    • v.16 no.4
    • /
    • pp.394-407
    • /
    • 2011
  • Better understanding of the complex factors leading to human diseases will be necessary for both long term prevention and for managing short and long-term health problems. The underlying causes, leading to a global health crisis in both acute and chronic diseases, include finite global health care resources for sustained healthy human survival, the population explosion, increased environmental pollution, decreased clean air, water, food distribution, diminishing opportunities for human self-esteem, increased median life span, and the interconnection of infectious and chronic diseases. The transition of our pre-human nutritional requirements for survival to our current culturally-shaped diet has created a biologically-mismatched human dietary experience. While individual genetic, gender, and developmental stage factors contribute to human diseases, various environmental and culturally-determined factors are now contributing to both acute and chronic diseases. The transition from the hunter-gatherer to an agricultural-dependent human being has brought about a global crisis in human health. Initially, early humans ate seasonally-dependent and calorically-restricted foods, during the day, in a "feast or famine" manner. Today, modern humans eat diets of caloric abundance, at all times of the day, with foods of all seasons and from all parts of the world, that have been processed and which have been contaminated by all kinds of factors. No longer can one view, as distinct, infectious agent-related human acute diseases from chronic diseases. Moreover, while dietary and environmental chemicals could, in principle, cause disease pathogenesis by mutagenic and cytotoxic mechanisms, the primary cause is via "epigenetic", or altered gene expression, modifications in the three types of cells (e.g., adult stem; progenitor and terminally-differentiated cells of each organ) during all stages of human development. Even more significantly, alteration in the quantity of adult stem cells during early development by epigenetic chemicals could either increase or decrease the risk to various stem cell-based diseases, such as cancer, later in life. A new concept, the Barker hypothesis, has emerged that indicates pre-natal maternal dietary exposures can now affect diseases later in life. Examples from the studies of the atomic bomb survivors should illustrate this insight.

Physics on cancer and its curing

  • Oh, Hung-Kuk
    • Proceedings of the Korean Society for Emotion and Sensibility Conference
    • /
    • 2000.11a
    • /
    • pp.91-97
    • /
    • 2000
  • The conventional model did not take momentum conservation into consideration when the electron absorbs and emits the photons. II-ray provides momentum conservations on any directions of the entering photons, and also the electrons have radial momentum conservations and fully elastic bouncing between two atoms, in the new atom model. Conventional atom model must be criticized on the following four points. (1) Natural motions between positive and negative entities are not circular motions but linear going and returning ones, for examples sexual motion, tidal motion, day and night etc. Because the radius of hydrogen atom's electron orbit is the order of 10$^{-11}$ m and the radia of the nucleons in the nucleus are the order of 10$^{-l4}$m and then the converging n-gamma rays to the nucleus have so great circular momentum, the electron can not have a circular motion. We can say without doubt that any elementary mass particle can have only linear motion because of the n-rays' hindrances, near the nucleus. (2) Potential energy generation was neglected when electron changes its orbit from outer one to inner one. The h v is the kinetic energy of the photo-electron. The total energy difference between orbits comprises kinetic and potential energies. (3) The structure of the space must be taken into consideration because the properties of the electron do not change during the transition from outer orbit to inner one even though it produces photon. (4) Total energy conservation law applies to the energy flow between mind and matter because we daily experiences a interconnection between mind and body. An understanding of the mechanisms responsible for the control of normal proliferation and differentiation of the various cell types which make up the human body will undoubtedly allow a greater insight into the abnormal growth of cells, A large body of biochemical evidence was eventually used to generate a receptor model with an external ligand binding domain linked through a single trans-membrane domain to the cytoplasmic tyrosine kinase and autophosphory-lation domains. The ligand induced conformational change in the external domain generates either a push-pull or rotational signal which is transduced from the outside to the inside of cell.l.ell.

  • PDF

A Robust PLL of PCS for Fuel Cell System under Unbalanced Grid Voltages (불평형 계통전압에 강인한 연료전지용 전력변환시스템의 PLL 방법)

  • Kim, Yun-Hyun;Kim, Wang-Rae;Lim, Chang-Jin;Kim, Kwang-Seob;Kwon, Byung-Ki;Choi, Chang-Ho
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.103-105
    • /
    • 2008
  • In grid-interconnection system, a fast, robust and precise phase angle detector is most important to grid synchronization and the active power control. The phase angle can be easily estimated by synchronous dq PLL system. On the other hand under unbalanced voltage condition, synchronous dq PLL system has problem that harmonics occur to phase angle or magnitude of grid voltage because of the effect of the negative sequence components. So, To eliminate the negative sequence components, the PLL method using APF (All Pass Filter) in a stationery reference frame to extract positive sequence components under unbalanced voltage condition is researched. In this paper, we propose a new PLL method with decoupling network using APF in a synchronous reference frame to extract the positive sequence components of the grid voltage under unbalanced grid. The cut-off frequency of APF in a synchronous reference frame can be set to twice of the fundamental frequency comparing with that of APF in a stationery reference frame which is the fundamental frequency. The proposed PLL strategy can detect the phase angle quickly and accurately under unbalanced gird voltages. Simulation and experimental results are presented to verify the proposed strategy under different kind of voltage dips.

  • PDF

Design of a Bit-Level Super-Systolic Array (비트 수준 슈퍼 시스톨릭 어레이의 설계)

  • Lee Jae-Jin;Song Gi-Yong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.12
    • /
    • pp.45-52
    • /
    • 2005
  • A systolic array formed by interconnecting a set of identical data-processing cells in a uniform manner is a combination of an algorithm and a circuit that implements it, and is closely related conceptually to arithmetic pipeline. High-performance computation on a large array of cells has been an important feature of systolic array. To achieve even higher degree of concurrency, it is desirable to make cells of systolic array themselves systolic array as well. The structure of systolic array with its cells consisting of another systolic array is to be called super-systolic array. This paper proposes a scalable bit-level super-systolic amy which can be adopted in the VLSI design including regular interconnection and functional primitives that are typical for a systolic architecture. This architecture is focused on highly regular computational structures that avoids the need for a large number of global interconnection required in general VLSI implementation. A bit-level super-systolic FIR filter is selected as an example of bit-level super-systolic array. The derived bit-level super-systolic FIR filter has been modeled and simulated in RT level using VHDL, then synthesized using Synopsys Design Compiler based on Hynix $0.35{\mu}m$ cell library. Compared conventional word-level systolic array, the newly proposed bit-level super-systolic arrays are efficient when it comes to area and throughput.

Electrical Characteristics of c-Si Shingled Photovoltaic Module Using Conductive Paste based on SnBiAg (SnBiAg 전도성 페이스트를 이용한 Shingled 결정질 태양광 모듈의 전기적 특성 분석)

  • Yoon, Hee-Sang;Song, Hyung-Jun;Kang, Min Gu;Cho, Hyeon Soo;Go, Seok-Whan;Ju, Young-Chul;Chang, Hyo Sik;Kang, Gi-Hwan
    • Korean Journal of Materials Research
    • /
    • v.28 no.9
    • /
    • pp.528-533
    • /
    • 2018
  • In recent years, solar cells based on crystalline silicon(c-Si) have accounted for much of the photovoltaic industry. The recent studies have focused on fabricating c-Si solar modules with low cost and improved efficiency. Among many suggested methods, a photovoltaic module with a shingled structure that is connected to a small cut cell in series is a recent strong candidate for low-cost, high efficiency energy harvesting systems. The shingled structure increases the efficiency compared to the module with 6 inch full cells by minimizing optical and electrical losses. In this study, we propoese a new Conductive Paste (CP) to interconnect cells in a shingled module and compare it with the Electrical Conductive Adhesives (ECA) in the conventional module. Since the CP consists of a compound of tin and bismuth, the module is more economical than the module with ECA, which contains silver. Moreover, the melting point of CP is below $150^{\circ}C$, so the cells can be integrated with decreased thermal-mechanical stress. The output of the shingled PV module connected by CP is the same as that of the module with ECA. In addition, electroluminescence (EL) analysis indicates that the introduction of CP does not provoke additional cracks. Furthermore, the CP soldering connects cells without increasing ohmic losses. Thus, this study confirms that interconnection with CP can integrate cells with reduced cost in shingled c-Si PV modules.

Analysis of Customer Power Quality Characteristics Using PV Test Devices (태양광전원 계통연계시험장치에 의한 수용가 전력품질특성에 관한 연구)

  • Kim, Byungmok;Kim, Byungki;Park, Jeabum;Rho, Daeseok
    • Journal of the Korea Convergence Society
    • /
    • v.2 no.4
    • /
    • pp.21-27
    • /
    • 2011
  • Recently, new distributed power sources such as photovoltaic, wind power, fuel cell systems etc. are energetically interconnected and operated in the distribution feeders, as one of the national projects for alternative energy. When new power sources are considered to be interconnected to distribution systems, bi-directional power flow and interconnection conditions of new power sources may cause several power quality problems like voltage sag, voltage swell, harmonics, since new power sources can change typical characteristics of distribution systems. Under these situations, this paper deals with the analysis the power quality problems at primary and secondary feeders in distribution systems, when new power sources like photovoltaic (PV) systems are interconnected, by using the test devices for PV systems based on the LabVIEW S/W. This paper presents the test device which is consisted with model distribution system and model PV systems. By performing the simulation for power quality operation characteristic based on the test facilities, this paper presents the optimal countermeasures for power quality.

Numerical Analysis of Si-based Photovoltaic Modules with Different Interconnection Methods

  • Park, Chihong;Yoon, Nari;Min, Yong-Ki;Ko, Jae-Woo;Lim, Jong-Rok;Jang, Dong-Sik;Ahn, Jae-Hyun;Ahn, Hyungkeun
    • Transactions on Electrical and Electronic Materials
    • /
    • v.15 no.2
    • /
    • pp.103-111
    • /
    • 2014
  • This paper investigates the output powers of PV modules by predicting three unknown parameters: reverse saturation current, and series and shunt resistances. A theoretical model using the non-uniform physical parameters of solar cells, including the temperature coefficients, voltage, current, series and shunt resistances, is proposed to obtain the I-V characteristics of PV modules. The solar irradiation effect is included in the model to improve the accuracy of the output power. Analytical and Newton methods are implemented in MATLAB to calculate a module output. Experimental data of the non-uniform solar cells for both serial and parallel connections are used to extend the implementation of the model based on the I-V equation of the equivalent circuit of the cells and to extend the application of the model to m by n modules configuration. Moreover, the theoretical model incorporates, for the first time, the variations of series and shunt resistances, reverse saturation current and irradiation for easy implementation in real power generation. Finally, this model can be useful in predicting the degradation of a PV system because of evaluating the variations of series and shunt resistances, which are critical in the reliability analysis of PV power generation.

Design of Synchronous Quaternary Counter using Quaternary Logic Gate Based on Neuron-MOS (뉴런 모스 기반의 4치 논리게이트를 이용한 동기식 4치 카운터 설계)

  • Choi Young-Hee;Yoon Byoung-Hee;Kim Heung-Soo
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.42 no.3 s.333
    • /
    • pp.43-50
    • /
    • 2005
  • In this paper, quaternary logic gates using Down literal circuit(DLC) has been designed, and then synchronous Quaternary un/down counter using those gates has been proposed The proposed counter consists of T-type quaternary flip flop and 1-of-2 threshold-t MUX, and T-type quaternary flip flop consists of D-type quaternary flip flop and quaternary logic gates(modulo-4 addition gates, Quaternary inverter, identity cell, 1-of-4 MUX). The simulation result of this counter show delay time of 10[ns] and power consumption of 8.48[mW]. Also, assigning the designed counter to MVL(Multiple-valued Logic) circuit, it has advantages of the reduced interconnection and chip area as well as easy expansion of digit.

A Study on the Optimal Method for Malfunction of Protection Devices in Distribution Systems Interconnected with Photovoltaic Systems (태양광발전이 연계된 배전계통에서 보호협조기기의 오동작에 대한 최적 방안에 관한 연구)

  • Rho, Dae-Seok;Kim, Chan-Hyeok;Shin, Chang-Hoon;Jeong, Won-Wook
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1599-1606
    • /
    • 2008
  • Recently, new dispersed generation systems such as photovoltaic, wind power, fuel cell etc. are energetically interconnected and operated in the distribution systems, as one of the national projects for alternative energy with the provision against oil crisis. The technical guidelines on the interconnection of dispersed generation systems have been established and conducted positively. However, protection devices (Re-closer) in primary feeder of distribution system interconnected with photovoltaic generation may cause problems with mis-operation, and then many customers could have problems like an interruption. So, this paper presents the optimal method to minimize the impact of interruption, using both the symmetric method and MATLAB/SIMULINK. And, also this paper shows the effectiveness of proposed method by simulating at the real distribution systems.

Tumorigenesis after Injection of Lung Cancer Cell Line (SW-900 G IV) into the Pleural Cavity of Nude Mice (누드마우스의 흉강에 폐암세포주의 주입에 의한 종양형성과 HER2/neu와 TGF-${\beta}_1$의 발현)

  • Park, Eok-Sung;Kim, Song-Myung;Kim, Jong-In
    • Journal of Chest Surgery
    • /
    • v.43 no.6
    • /
    • pp.588-595
    • /
    • 2010
  • Background: Base on types of tumor, the types of expressed tumor is diverse and the difference in its expression rate is even more various. Due to such reasons an animal model is absolutely needed for a clinical research of lung cancer. The author attempted oncogenesis by cultivating a cell line of non-small cell carcinoma and then injecting it inside thoracic cavities of nude mice. The author conducted quantitative analyses of HER2/neu tumor gene - an epidermal growth factor receptor (EGFR) related to lung cancer, and TGF-${\beta}_1$, which acts as a resistance to cell growth inhibition and malignant degeneration. In order to investigate achievability of the oncogenesis, histological changes and the expression of cancer gene in case of orthotopic lung cancer is necessary. Material and Method: Among 20 immunity-free male BALB/c, five nude mice were selected as the control group and rest as the experimental group. Their weights ranged from 20 to 25 gm (Orient, Japan). After injection of lung cancer line (SW900 G IV) into the pleural cavity of nude mice, They were raised at aseptic room for 8 weeks. HER2/neu was quantitatively analyzed by separating serum from gathered blood via chemiluminiscent immunoassay (CLIA), and immunosandwitch method was applied to quantitatively analyze TGF-${\beta}_1$. SPSS statistical program (SPSS Version 10.0, USA) was implemented for statistical analysis. Student T test was done, and cases in which p-value is less than 0.05 were considered significant. Result: Even after lung cancer was formed in the normal control group or after intentionally injected lung cancer cell line, no amplification of HER2/neu gene showed reaction. However, the exact quantity of TGF-${\beta}_1$ was $28,490{\pm}8,549pg/mL$, and the quantity in the group injected with lung cancer cell was $42,362{\pm}14,449pg/mL$, meaning 1.48 times highly Significant (p<0.483). It proved that HER2/neu gene TGF-${\beta}_1$ had no meaningful interconnection. Conclusion: TGF-${\beta}_1$ gene expressed approximately 1.48 times amplification in comparison to the control group. The amplification of TGF-${\beta}_1$ meant somatic recuperation inhibition mechanism due to carcinogenesis in nude mice was definitely working. It may be implemented as a quantitative analysis that allows early detection of lung cancer in human body.