• Title/Summary/Keyword: Capacitor voltage stress

검색결과 138건 처리시간 0.02초

Medium Voltage Resonant Converter with Balanced Input Capacitor Voltages and Output Diode Currents

  • Lin, Bor-Ren;Du, Yan-Kang
    • Journal of Power Electronics
    • /
    • 제15권2호
    • /
    • pp.389-398
    • /
    • 2015
  • This paper presents a 1.92 kW resonant converter for medium voltage applications that uses low voltage stress MOSFETs (500V) to achieve zero voltage switching (ZVS) turn-on. In the proposed converter, four MOSFETs are connected in series to limit the voltage stress of the power switches at half of the input voltage. In addition, three resonant circuits are adopted to share the load current and to reduce the current stress of the passive components. Furthermore, the transformer primary and secondary windings are connected in series to balance the output diode currents for medium power applications. Split capacitors are adopted in each resonant circuit to reduce the current stress of the resonant capacitors. Two balance capacitors are also used to automatically balance the input capacitor voltage in every switching cycle. Based on the circuit characteristics of the resonant converter, the MOSFETs are turned on under ZVS. If the switching frequency is less than the series resonant frequency, the rectifier diodes can be turned off under zero current switching (ZCS). Experimental results from a prototype with a 750-800 V input and a 48V/40A output are provided to verify the theoretical analysis and the effectiveness of the proposed converter.

Modified Capacitor-Assisted Z-Source Inverter Topology with Enhanced Boost Ability

  • Ho, Anh-Vu;Chun, Tae-Won
    • Journal of Power Electronics
    • /
    • 제17권5호
    • /
    • pp.1195-1202
    • /
    • 2017
  • This paper presents a novel topology named a modified capacitor-assisted Z-source inverter (MCA-ZSI) based on the traditional ZSI. The impedance network of the proposed MCA-ZSI consists of two symmetrical cells coupled with two capacitors with an X-shape structure, and each cell has two inductors, two capacitors, and one diode. Compared with other topologies based on switched ZSI with the same number of components used at impedance network, the proposed topology provides higher boost ability, lower voltage stress across inverter switching devices, and lower capacitor voltage stress. The improved performances of the proposed topology are demonstrated in the simulation and experimental results.

Three-Level SEPIC with Improved Efficiency and Balanced Capacitor Voltages

  • Choi, Woo-Young;Lee, Seung-Jae
    • Journal of Power Electronics
    • /
    • 제16권2호
    • /
    • pp.447-454
    • /
    • 2016
  • A single-ended primary-inductor converter (SEPIC) features low input current ripple and output voltage up/down capability. However, the switching devices in a two-level SEPIC suffer from high voltage stresses and switching losses. To cope with this drawback, this study proposes a three-level SEPIC that uses a low voltage-rated switch and thus achieves better switching performance compared with the two-level SEPIC. The three-level SEPIC can reduce switch voltage stresses and switching losses. The converter operation and control method are described in this work. The experimental results for a 500 W prototype converter are also discussed. Experimental results show that unlike the two-level SEPIC, the three-level SEPIC achieves improved power efficiency with balanced capacitor voltages.

Switched Capacitor Based High Gain DC-DC Converter Topology for Multiple Voltage Conversion Ratios with Reduced Output Impedance

  • Priyadarshi, Anurag;Kar, Pratik Kumar;Karanki, Srinivas Bhaskar
    • Journal of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.676-690
    • /
    • 2019
  • This paper presents a switched capacitor (SC) based bidirectional dc-dc converter topology for high voltage gain applications. The proposed converter is able to operate with multiple integral voltage conversion ratios based on user input. The architecture of a user-friendly, inductor-less multi-voltage-gain bidirectional dc-dc converter is proposed in this study. The inductor-less or magnetic-less design of the proposed converter makes it effective in higher temperature applications. Furthermore, the proposed converter has a reduced component count and lower voltage stress across its switches and capacitors when compared to existing SC converters. An output impedance analysis of the proposed converter is presented and compared with popular existing SC converters. The proposed converter is simulated in the OrCAD PSpice environment and the obtained results are presented. A 200 W hardware prototype of the proposed SC converter has been developed. Experimental results are presented to validate the efficacy of the proposed converter.

Bidirectional Quasi-Cuk DC/DC Converter with Reduced Voltage Stress on Capacitor and Capability of Changing the Output Polarity

  • Asl, Elias Shokati;Sabahi, Mehran
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권3호
    • /
    • pp.1108-1113
    • /
    • 2017
  • In this paper, a bidirectional topology for quasi-Cuk dc/dc converter with capability of zero-voltage and zero-current-switching (ZVZCS) is proposed. The bidirectional quasi-Cuk (BQ-Cuk) converter has different voltage and current transfer ratio, reduced voltage stress on capacitor and capability of changing the output polarity in comparison with conventional bidirectional Cuk converter. In this paper, steady-state analysis of the quasi-Cuk converter with capability of ZVZCS in turn-on is presented. Then, critical inductances for transient from this operation to two new operations are calculated. Next, besides values designing of used elements, maximum and minimum value of their current and voltage are calculated. Finally, experimental results to verify the accuracy of the proposed converter in different operating modes are presented.

저압 중용량 인버터에서의 기생 인덕턴스에 의한 영향 (Effects of stray inductance on low volatge inverter for medium capacity)

  • 최종선;전태원;김지용;김흥근
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2008년도 추계학술대회 논문집
    • /
    • pp.61-63
    • /
    • 2008
  • An inverter with large capacity has been demanded at a factory automation and diffusion of the energy saving work. As the capacity of inverter is larger, the stary inductance has much influence on both the di/dt of IGBT current, and voltage stress across IGBT. Also, the life of the snubber capacitor may be shortened due to overheating of the snubber capacitor. In this paper, a planar busbar which consists of two layers is applied to N700-series inverter in order to minimize stray inductance. The voltage stress across IGBT is changed by both the DC busbar structure and the capacity of snubber capacitor.

  • PDF

전력용 커패시터의 전기적 스트레스 해석 (Analysis for Electrical Stress of Power Capacitor)

  • 김종겸;박영진;이은웅;이동주
    • 전기학회논문지P
    • /
    • 제57권4호
    • /
    • pp.370-376
    • /
    • 2008
  • Power capacitors is widely used for power factor correction and component of passive filter in the user power systems. Recently, application of non-linear load is gradually increased. Non-linear load produces harmonic components of current. There are series resonance and parallel resonance when capacitors are applied in the user electrical application. If this harmonic component matches resonance, voltage and current is magnified and has severely an influences on capacitor. This paper purposes a new method for the magnitude of voltage and current by the frequency scan analysis without equivalent circuit for the actual circuit at the resonance condition.

ESL-𝚪-Z- Source Inverter

  • Pan, Lei;Sun, Hexu;Wang, Beibei;Dong, Yan;Gao, Rui
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권2호
    • /
    • pp.589-599
    • /
    • 2014
  • On the basis of the traditional ZSI (Z-source inverter), this paper presents a ESL-${\Gamma}$-ZSI, which uses a unique ${\Gamma}$-shaped impedance network and an extended SL network for boosting its output voltage in addition to their usual voltage-buck behavior. The inverter can increase the boost factor through adjusting shoot-through duty ratio and increasing the number of inductors. Capacitor voltage stress of ESL-${\Gamma}$-ZSI is a constant when 1>D>0, and ESL-${\Gamma}$-ZSI has small inductor current stress. The working principle of ESL-${\Gamma}$-ZSI and comparison with the classical ZSI and SL- ZSI are analyzed in detail. The power loss comparison between ESL-${\Gamma}$-ZSI and Cuk converter is analyzed detailedly. Simulation and experimental results are given to demonstrate the operation features of the inverter.

H-type Structural Boost Three-Level DC-DC Converter with Wide Voltage-Gain Range for Fuel Cell Applications

  • Bi, Huakun;Wang, Ping;Che, Yanbo
    • Journal of Power Electronics
    • /
    • 제18권5호
    • /
    • pp.1303-1314
    • /
    • 2018
  • To match the dynamic lower voltage of a fuel cell stack and the required constant higher voltage (400V) of a DC bus, an H-type structural Boost three-level DC-DC converter with a wide voltage-gain range (HS-BTL) is presented in this paper. When compared with the traditional flying-capacitor Boost three-level DC-DC converter, the proposed converter can obtain a higher voltage-gain and does not require a complicate control for the flying-capacitor voltage balance. Moreover, the proposed converter, which can draw a continuous and low-rippled current from an input source, has the advantages of a wide voltage-gain range and low voltage stress for power semiconductors. The operating principle, parameters design and a comparison with other converters are presented and analyzed. Experimental results are also given to verify the aforementioned characteristics and theoretical analysis. The proposed converter is suitable for application of fuel cell systems.

Design Guidelines for a Capacitive Wireless Power Transfer System with Input/Output Matching Transformers

  • Choi, Sung-Jin
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권6호
    • /
    • pp.1656-1663
    • /
    • 2016
  • A capacitive wireless power transfer (C-WPT) system uses an electric field to transmit power through a physical isolation barrier which forms a pair of ac link capacitors between the metal plates. However, the physical dimension and low dielectric constant of the interface medium severely limit the effective link capacitance to a level comparable to the main switch output capacitance of the transmitting circuit, which thus narrows the soft-switching range in the light load condition. Moreover, by fundamental limit analysis, it can be proved that such a low link capacitance increases operating frequency and capacitor voltage stress in the full load condition. In order to handle these problems, this paper investigates optimal design of double matching transformer networks for C-WPT. Using mathematical analysis with fundamental harmonic approximation, a design guideline is presented to avoid unnecessarily high frequency operation, to suppress the voltage stress on the link capacitors, and to achieve wide ZVS range even with low link capacitance. Simulation and hardware implementation are performed on a 5-W prototype system equipped with a 256-pF link capacitance and a 200-pF switch output capacitance. Results show that the proposed scheme ensures zero-voltage-switching from full load to 10% load, and the switching frequency and the link capacitor voltage stress are kept below 250 kHz and 452 V, respectively, in the full load condition.