Browse > Article
http://dx.doi.org/10.6113/JPE.2017.17.5.1195

Modified Capacitor-Assisted Z-Source Inverter Topology with Enhanced Boost Ability  

Ho, Anh-Vu (School of Engineering, Eastern International University)
Chun, Tae-Won (Department of Electrical Engineering, University of Ulsan)
Publication Information
Journal of Power Electronics / v.17, no.5, 2017 , pp. 1195-1202 More about this Journal
Abstract
This paper presents a novel topology named a modified capacitor-assisted Z-source inverter (MCA-ZSI) based on the traditional ZSI. The impedance network of the proposed MCA-ZSI consists of two symmetrical cells coupled with two capacitors with an X-shape structure, and each cell has two inductors, two capacitors, and one diode. Compared with other topologies based on switched ZSI with the same number of components used at impedance network, the proposed topology provides higher boost ability, lower voltage stress across inverter switching devices, and lower capacitor voltage stress. The improved performances of the proposed topology are demonstrated in the simulation and experimental results.
Keywords
Boost ability; Impedance network; Inverter; Switched-capacitor; Z-source inverter;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 K. Deng, J. Zheng, and J. Mei, "Novel switched-inductor quasi-Z-source inverter", Journal of Power Electronics, Vol. 14, No. 1, pp. 11-21, Jan. 2014.   DOI
2 M. K. Nguyen, Y. C. Lim, and J. H. Choi, "Two switched-inductor quasi-Z-source inverters," IET Power Electron., Vol. 5, No. 7, pp. 1017-1025, Aug. 2012.   DOI
3 V. R. Vakacharla, M. Raghuram, and S. K. Singh, "Hybrid switched inductor impedance source converter - A decoupled approach," IEEE Trans. Power Electron., Vol. 31, No. 11, pp. 7509-7521, Nov. 2016.   DOI
4 Y. P. Siwakoti, F. Z. Peng, F. Blaabjerg, P. C. Loh, and G. E. Town, "Impedance-source networks for electric power conversion part I: A topology review," IEEE Trans. Power Electron., Vol. 30, No. 2, pp. 699-716, Feb. 2015.   DOI
5 Q. N. Trinh and H. H. Lee, "A new Z-source inverter topology with high voltage boost ability," Journal of Elect. Eng. & Technology, Vol. 7, No. 5, pp. 714-723, 2012.   DOI
6 D. Li, P. C. Loh, M. Zhu, F. Gao, and F. Blaabjerg, "Generalized multicell switched-inductor and switched-capacitor Z-source inverter," IEEE Trans. Power Electron., Vol. 28, No. 2, pp. 837-848, Feb. 2013.   DOI
7 W. Qian, F. Z. Peng, and H. Cha, "Trans-Z-source inverters," IEEE Trans. Power Electron., Vol. 26, No. 12, pp. 3453-3463, Dec. 2011.   DOI
8 S. D. Tavakoli, J. Khajesalehi, M. Hamzeh, and K. Sheshyekani, "Decentralised voltage balancing in bipolar dc microgrids equipped with trans-Z-source interlinking converter," IET Renew. Power Gener., Vol. 10, No. 5, pp. 703-712, May 2016.   DOI
9 M. K. Nguyen, Y. C. Lim, and G. B. Cho, "Switched-inductor quasi-Z-source inverter," IEEE Trans. Power Electron., Vol. 26, No. 11, pp. 3183-3191, Nov. 2011.   DOI
10 S. Shubhra and S. Misha, "A coupled inductor based high boost inverter with sub-unity turns-ratio range," IEEE Trans. Power Electron., Vol. 31, No. 11, pp. 7534-7543, Nov. 2016.   DOI
11 D. Vinnikov, A. Chub, E. Liivik, and I. Roasto, "High-performance quasi-Z-source series resonant DC-DC converter for photovoltaic module-level power electronics applications," IEEE Trans. Power Electron., Vol. 32, No. 5, pp. 3634-3650, May, 2017.   DOI
12 M. K. Nguyen, Y. C. Lim, J. H. Choi, and Y. O. Choi, "Trans-switched boost inverters," IET Power Electron., Vol. 9, No. 5, pp. 1065-1073, Apr. 2016.   DOI
13 Y. P. Siwakoti, F. Z. Peng, F. Blaabjerg, P. C. Loh, G. E. Town, and S. Yang, "Impedance-source networks for electric power conversion part II: Review of control and modulation techniques," IEEE Trans. Power Electron., Vol. 30, No. 4, pp. 1887-1906, Apr. 2015.   DOI
14 M. Shen, J. Wang, A. Joseph, F. Z. Peng, L. M. Tolbert, and D. J. Adams, "Constant boost control of the Z-source inverter to minimize current ripple and voltage stress," IEEE Trans. Ind. Appl., Vol. 42, No. 3, pp. 770-778, May/Jun. 2006.   DOI
15 F. Z. Peng, "Z-source inverter," IEEE Trans. Ind. Appl., Vol. 39, No. 2, pp. 504-510, Mar. 2003.   DOI
16 Z. Rymarski and K. Bernacki, "Influence of Z-source output impedance on dynamic properties of single-phase voltage source inverters for uninterrupted power supply," IET Power Electron., Vol. 7, No. 8, pp. 1978-1988, 2014.   DOI
17 Y. Liu, B. Ge, H. Abu-Rub, and F. Z. Peng, "An effective control method for three-phase quasi-Z-source cascaded multilevel inverter based grid-tie photovoltaic power system," IEEE Trans. Ind. Electron., Vol. 61, No. 12, pp. 6794-6802, Dec. 2014.   DOI
18 C. L. Kala-Konga, M. N. Gitau, and R.C. Bansal, "Steady-state and small-signal models of a three-phase quasi-Z-source AC-DC converter for wind applications," IET Renew. Power Gener., Vol. 10, No. 7, pp. 1033-1040, 2016.   DOI
19 M. Zhu, K. Yu, and F. L. Luo, "Switched inductor Z-source inverter," IEEE Trans. Power Electron., Vol. 25, No. 8, pp. 2150-2158, Aug. 2010.   DOI
20 H. Zhu, D. Yu, W. Zhu and Z. Zhou, "DC-link voltage regulation of bidirectional quasi-Z-source inverter for electric vehicle Applications," in Proc. IEEE-VPPC, pp. 1-5, 2016.
21 H. Fathi and H. Madadi, "Enhanced-boost Z-source inverter with switched Z-impedance," IEEE Trans. Ind. Electron., Vol. 63, No. 2, pp. 691-703, Feb. 2016.   DOI