Browse > Article
http://dx.doi.org/10.6113/JPE.2015.15.2.389

Medium Voltage Resonant Converter with Balanced Input Capacitor Voltages and Output Diode Currents  

Lin, Bor-Ren (Department of Electrical Engineering, National Yunlin University of Science and Technology)
Du, Yan-Kang (Department of Electrical Engineering, National Yunlin University of Science and Technology)
Publication Information
Journal of Power Electronics / v.15, no.2, 2015 , pp. 389-398 More about this Journal
Abstract
This paper presents a 1.92 kW resonant converter for medium voltage applications that uses low voltage stress MOSFETs (500V) to achieve zero voltage switching (ZVS) turn-on. In the proposed converter, four MOSFETs are connected in series to limit the voltage stress of the power switches at half of the input voltage. In addition, three resonant circuits are adopted to share the load current and to reduce the current stress of the passive components. Furthermore, the transformer primary and secondary windings are connected in series to balance the output diode currents for medium power applications. Split capacitors are adopted in each resonant circuit to reduce the current stress of the resonant capacitors. Two balance capacitors are also used to automatically balance the input capacitor voltage in every switching cycle. Based on the circuit characteristics of the resonant converter, the MOSFETs are turned on under ZVS. If the switching frequency is less than the series resonant frequency, the rectifier diodes can be turned off under zero current switching (ZCS). Experimental results from a prototype with a 750-800 V input and a 48V/40A output are provided to verify the theoretical analysis and the effectiveness of the proposed converter.
Keywords
Interleaved PWM; PWM converters; Switching mode power supplies;
Citations & Related Records
연도 인용수 순위
  • Reference
1 J. P. Rodrigues, S. A. Mussa, I. Barbi, and A. J. Perin, “Three-level zero-voltage switching pulse-width modulation DC-DC boost converter with active clamping,” IET Proc.- Power Electron., Vol. 3, No. 3, pp. 345-354, 2010.   DOI   ScienceOn
2 S.-Y. Cho, I.-O. Lee, J.-K. Kim, and G.-W. Moon, “A new standby structure based on a forward converter integrated with a phase-shift full-bridge converter for server power supplies,” IEEE Trans. Power Electron., Vol. 28, No. 1, pp. 336-346, Jan. 2013.   DOI   ScienceOn
3 Z. Guo, D. Sha, X. Liao, and J. Luo, “Input-series-output-parallel phase-shift full-bridge derived DC–DC converters with auxiliary LC networks to achieve wide zero-voltage switching range,” IEEE Trans. Power Electron., Vol. 29 , No. 10, pp. 5081-5086, Oct. 2014.   DOI   ScienceOn
4 B. Gu, J.-S. Lai, N. Kees, and C. Zheng, “Hybrid-switching full-fridge DC–DC converter with minimal voltage stress of bridge rectifier, reduced circulating losses, and filter requirement for electric vehicle battery chargers,” IEEE Trans. Power Electron., Vol. 28, No. 3, pp. 1132-1144, Mar. 2013.   DOI   ScienceOn
5 Y. Jiang, Z. Chen, and J. Pan, “Zero-voltage switching phase shift full-bridge step-up converter with integrated magnetic structure,” IET Proceedings –Power Electron., Vol. 3, No. 5, pp. 732-739, 2010.   DOI   ScienceOn
6 B. M. Song, R. McDowell, A. Bushnell, and J. Ennis, “A three-level DC-DC converter with wide input voltage operations for ship-electric-power-distribution systems,” IEEE Trans. Plasma Science. Vol. 32, No. 5, pp. 1856-1863, Oct. 2004.   DOI   ScienceOn
7 R. Beiranvand, B. Rashidian, M. R. Zolghadri and S. M. H. Alavi, “A design procedure for optimizing the LLC resonant converter as a wide output range voltage source,” IEEE Trans. Power Electron., Vol. 27, No. 8, pp. 3749-3763, Apr. 2012.   DOI   ScienceOn
8 B. Yang, F. C. Lee, A. J. Zhang, and G. Huang, “LLC resonant converter for front end DC/DC conversion,” in Proc. of IEEE APEC, Vol. 2, pp. 1108-1112, 2002.
9 R. Beiranvand, B. Rashidian, M. R. Zolghadri and S. M. H. Alavi, “Using LLC resonant converter for designing wide-range voltage source,” IEEE Trans. Ind. Electron., Vol. 58, No. 5, pp. 1746-1756, May 2011.   DOI   ScienceOn
10 D. Fu, Y. Liu, F. C. Lee, and M. Xu, “A novel driving scheme for synchronous rectifiers in LLC resonant converters,” IEEE Trans. Power Electron., Vol. 24, No. 5, pp. 1321-1329, May 2009.   DOI   ScienceOn
11 B.-R. Lin and C.-C. Chien, “Analysis and implementation of a new soft switching DC/DC PWM converter,” IET Proc.–Power Electron., Vol. 6, No. 1, pp. 202-213, 2013.   DOI   ScienceOn
12 B.-R. Lin and H.-Y. Shih, “ZVS converter with parallel connection in primary side and series connection in secondary side,” IEEE Trans. Ind. Electron., Vol. 58, No. 4, pp. 1251-1258, Apr. 2011.   DOI   ScienceOn
13 B.-R. Lin and P.-J. Cheng, “New ZVS DC--DC converter with series-connected transformers to balance the output currents,” IEEE Trans. Power Electron., Vol. 29, No. 1, pp. 246-255, Jan. 2014.   DOI   ScienceOn
14 U. Drofenik and F. Canales, “European trends and technologies in traction,” in Proc. of IPEC Conf., 2014.
15 C. Dong and Z. P. Fang, “A family of zero current switching switched-capacitor DC-DC converters,” in Proc. IEEE APEC Conf., pp. 1365-1372, 2010.
16 F. Canales, P. Barbosa, and F. C. Lee, “A zero-voltage and zero-current switching three-level DC/DC converter,” IEEE Trans. Power Electron., Vol. 17, No. 6, pp. 898-904, Nov. 2002.   DOI   ScienceOn
17 A. D. Cheok, S. Kawamoto, T. Matsumoto, and H. Obi, “High power AC/DC and DC/AC inverter for high speed train,” in Proc. of IEEE TENCON Conf., pp. 423-428, 2000.
18 J. R. Pinheiro and I. Barbi, “The three-level ZVS-PWM DC-to-DC converter,” IEEE Trans. Power Electron., Vol. 8, No. 4, pp. 486-492, Oct. 1993.   DOI   ScienceOn
19 Y. Gu, Z. Lu, L. Hang, Z. Qian, and G. Huang, “Three-level LLC series resonant DC/DC converter,” IEEE Trans. Power Electron., Vol. 20, No. 4, pp. 781-789, Jul. 2005.   DOI   ScienceOn
20 Y. Shi and X. Yang, “Zero-voltage switching PWM three-level full-bridge DC–DC converter with wide ZVS load range,” IEEE Trans. Power Electron., Vol. 28 , No. 10, pp. 4511-4524, Oct. 2013.   DOI   ScienceOn
21 J. L. Duarte, J. Lokos, and F. B. M. van Horck, “Phase-shift-controlled three-level converter with reduced voltage stress featuring ZVS over the full operation range,” IEEE Trans. Power Electron., Vol. 28, No. 5, pp. 2140-2150, May 2013.   DOI   ScienceOn
22 W. Chen and X. Ruan, “Zero-voltage-switching PWM hybrid full-bridge three-level converter with secondary-voltage clamping scheme,” IEEE Trans. Ind. Electron., Vol. 55, No. 2, pp. 644-654, Feb. 2008.   DOI   ScienceOn