• Title/Summary/Keyword: Capacitive MEMS

Search Result 43, Processing Time 0.027 seconds

1.5 V Sub-mW CMOS Interface Circuit for Capacitive Sensor Applications in Ubiquitous Sensor Networks

  • Lee, Sung-Sik;Lee, Ah-Ra;Je, Chang-Han;Lee, Myung-Lae;Hwang, Gunn;Choi, Chang-Auck
    • ETRI Journal
    • /
    • v.30 no.5
    • /
    • pp.644-652
    • /
    • 2008
  • In this paper, a low-power CMOS interface circuit is designed and demonstrated for capacitive sensor applications, which is implemented using a standard 0.35-${\mu}m$ CMOS logic technology. To achieve low-power performance, the low-voltage capacitance-to-pulse-width converter based on a self-reset operation at a supply voltage of 1.5 V is designed and incorporated into a new interface circuit. Moreover, the external pulse signal for the reset operation is made unnecessary by the employment of the self-reset operation. At a low supply voltage of 1.5 V, the new circuit requires a total power consumption of 0.47 mW with ultra-low power dissipation of 157 ${\mu}W$ of the interface-circuit core. These results demonstrate that the new interface circuit with self-reset operation successfully reduces power consumption. In addition, a prototype wireless sensor-module with the proposed circuit is successfully implemented for practical applications. Consequently, the new CMOS interface circuit can be used for the sensor applications in ubiquitous sensor networks, where low-power performance is essential.

  • PDF

Low-Noise MEMS Microphone Readout Integrated Circuit Using Positive Feedback Signal Amplification

  • Kim, Yi-Gyeong;Cho, Min-Hyung;Lee, Jaewoo;Jeon, Young-Deuk;Roh, Tae Moon;Lyuh, Chun-Gi;Yang, Woo Seok;Kwon, Jong-Kee
    • ETRI Journal
    • /
    • v.38 no.2
    • /
    • pp.235-243
    • /
    • 2016
  • A low-noise readout integrated circuit (ROIC) for a microelectromechanical systems (MEMS) microphone is presented in this paper. A positive feedback signal amplification technique is applied at the front-end of the ROIC to minimize the effect of the output buffer noise. A feedback scheme in the source follower prevents degradation of the noise performance caused by both the noise of the input reference current and the noise of the power supply. A voltage booster adopts noise filters to cut out the noise of the sensor bias voltage. The prototype ROIC achieves an input referred noise (A-weighted) of -114.2 dBV over an audio bandwidth of 20 Hz to 20 kHz with a $136{\mu}A$ current consumption. The chip is occupied with an active area of $0.35mm^2$ and a chip area of $0.54mm^2$.

Development of Pressure Sensor for Identifying Guinea Pig's Large Intestinal Motility Caused by Drug (약물 투여에 따른 기니피그 대장 운동 측정을 위한 압력센서 개발)

  • Park, Jae-Soon;Park, Jung-Ho;Kim, Eung-Bo;Cho, Sung-Hwan;Jang, Su-Jeong;Joung, Yeun-Ho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.1
    • /
    • pp.23-29
    • /
    • 2016
  • In this paper, in order to quantify the peristalsis occurrence in a guinea pig's large intestine, a miniaturized air-gap capacitive pressure sensor was fabricated through micro-electro-mechanical system (MEMS). The proposed pressure sensor is a two-layered biocompatible polyimide substrate consisting of an air-gap capacitive plates between the substrates. The proposed pressure sensor was designed with a careful consideration of the structure and motility mechanism of the guinea pig's large intestine. Artificial pellets were mounted on a prototype pressure sensor to provide some redundancies in the form of size and shape of the guinea pig feces. Capacitance of a prototype sensor was recorded to be 2.5 ~ 3 pF. This capacitance value was later converted to count value using a lab fabricated data conversion system. Sensitivity of the pressure sensor was recorded to be below 1 mmHg per atmospheric pressure. During in vivo testing, artificial peristalsis caused by drug injection was measured by inserting the prototype pressure sensor into the guinea pig's large intestine and pressure data obtained due to artificial peristalsis was graphed using a labview program. The proposed pressure sensor could measure the pressure changes in the proximal, medial, and distal parts of the large intestine. The results of the experiment confirmed that pressure changes of guinea pig's large intestine was proportional to the degree of drug injection.

A 5-17 GHz Wideband Reflection-Type Phase Shifter Using Digitally Operated Capacitive MEMS Switches

  • Kim, Jung-Mu;Lee, Sang-Hyo;Park, Jae-Hyoung;Baek, Chang-Wook;Kwon, Young-Woo;Kim, Yong-Kweon
    • Proceedings of the Korean Society Of Semiconductor Equipment Technology
    • /
    • 2003.12a
    • /
    • pp.117-121
    • /
    • 2003
  • In this paper, a micromachined low-loss and ultra wide band reflection-type phase shifter (RTPS) is proposed. The phase shifter shows a constant phase shift from 5 to 17 GHz and consists of two cascaded reflection-type phase shifter. Low-loss reflection termination consists of digital capacitive switches, and air-gap overlay CPW couplers are used in order to employ the low-loss 3 dB coupling. The fabricated phase shifter showed the 5 discrete states, $0^{\circ},{\;}22.5^{\circ},{\;}45^{\circ},{\;}67.5^{\circ},{\;}90^{\circ}$ respectively, the average insertion loss of 3.48 dB, and maximum rms phase error of ${\pm}1.80^{\circ}$ for the relative phase shift from $0^{\circ}{\;}to{\;}90^{\circ}$ over 5-17 GHz.

  • PDF

Feedback control for initially unengaged vertical comb type electrostatic scanner (초기 비결합된 수직빗살 전극형 정전 스캐너의 거동제어)

  • Lee, Byeung-Leul;Won, Jongw-Ha;Cho, Jin-Woo;Jeong, Hee-Mun;Cho, Yong-Chol;Lee, Jin-Ho;Go, Young-Chol
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.845-846
    • /
    • 2006
  • In this paper, we describe a capacitive position sensing and motion control scheme of a MEMS scanner used for laser display application. The laser displays can be made by scanning laser beams much the same way a CRT scans electron beams. So the accuracy of the scanner motion determines the quality of the displayed image. The MEMS scanner under consideration is composed of electrostatic comb electrodes with initial gap and requires large driving voltage. Due to the under-damping and nonlinear driving characteristics, the scanner motion is subject to be an unwanted oscillation. For the linear scanner motion, we devise a differential charge amplifier and phase compensator. The experimental results show that the implemented feedback control system provides sufficient electrical damping and improves the dynamic performance of the scanner.

  • PDF

Capacitive Readout Circuit for Tri-axes Microaccelerometer with Sub-fF Offset Calibration

  • Ouh, Hyun Kyu;Choi, Jungryoul;Lee, Jungwoo;Han, Sangyun;Kim, Sungwook;Seo, Jindeok;Lim, Kyomuk;Seok, Changho;Lim, Seunghyun;Kim, Hyunho;Ko, Hyoungho
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.14 no.1
    • /
    • pp.83-91
    • /
    • 2014
  • This paper presents a capacitive readout circuit for tri-axes microaccelerometer with sub-fF offset calibration capability. A charge sensitive amplifier (CSA) with correlated double sampling (CDS) and digital to equivalent capacitance converter (DECC) is proposed. The DECC is implemented using 10-bit DAC, charge transfer switches, and a charge-storing capacitor. The DECC circuit can realize the equivalent capacitance of sub-fF range with a smaller area and higher accuracy than previous offset cancelling circuit using series-connected capacitor arrays. The readout circuit and MEMS sensing element are integrated in a single package. The supply voltage and the current consumption of analog blocks are 3.3 V and $230{\mu}A$, respectively. The sensitivities of tri-axes are measured to be 3.87 mg/LSB, 3.87 mg/LSB and 3.90 mg/LSB, respectively. The offset calibration which is controlled by 10-bit DECC has a resolution of 12.4 LSB per step with high linearity. The noise levels of tri-axes are $349{\mu}g$/${\sqrt}$Hz, $341{\mu}g$/${\sqrt}$Hz and $411{\mu}g$/${\sqrt}$Hz, respectively.

A Simple Analytical Model for MEMS Cantilever Beam Piezoelectric Accelerometer and High Sensitivity Design for SHM (structural health monitoring) Applications

  • Raaja, Bhaskaran Prathish;Daniel, Rathnam Joseph;Sumangala, Koilmani
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.78-88
    • /
    • 2017
  • Cantilever beam MEMS piezoelectric accelerometers are the simplest and most widely used accelerometer structure. This paper discusses the design of a piezoelectric accelerometer exclusively for SHM applications. While such accelerometers need to operate at a lower frequency range, they also need to possess high sensitivity and low noise floor. The availability of a simple model for deflection, charge, and voltage sensitivities will make the accelerometer design procedure less cumbersome. However, a review of the open literature suggests that such a model has not yet been proposed. In addition, previous works either depended on FEM analysis or only reported on the fabrication and characterization of piezoelectric accelerometers. Hence, this paper presents, for the first time, a simple analytical model developed for the deflection, induced voltage, and charge sensitivity of a cantilever beam piezoelectric accelerometer.The model is then verified using FEM analysis for a range of different cases. Further, the model was validated by comparing the induced voltages of an accelerometer estimated using this model with experimental voltages measured in the accelerometer after fabrication. Subsequently, the design of an accelerometer is demonstrated for SHM applications using the analytical model developed in this work. The designed accelerometer has 60 mV/g voltage sensitivity and 2.4 pC/g charge sensitivity, which are relatively high values compared to those of the piezoresistive and capacitive accelerometers for SHM applications reported earlier.

Designing Compensators of Dual Servo System For High Precision Positioning (초정밀 위치 제어를 위한 이중 서보 시스템의 보상기 설계)

  • Choi, Hyeun-Seok;Song, Chi-Woo;Han, Chang-Soo;Choi, Tae-Hoon;Lee, Nak-Kyu;Na, Kyung-Whan
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1309-1314
    • /
    • 2003
  • The high precision positioning mechanism is used in various industrial fields. It is used in semiconductor manufacturing line, test instrument, Bioengineering, and MEMS and so on. This paper presents a positioning mechanism with dual servo system. Dual servo system consists of a coarse stage and a fine motion stage. The course stage is driven by VCM and the actuator of fine stage is the PZT. The purposes of dual servo system are stability, higher bandwidth, and robustness. Lead compensator is applied to this control system, and is designed by PQ method. Designed compensator can improve property of positioning mechanism.

  • PDF

Development of capacitive Micromachined Ultrasonic Transducer (II) - Analysis of Microfabrication Process (미세가공 정전용량형 초음파 탐촉자 개발(II) - 미세공정기술 분석)

  • Kim, Ki-Bok;Ahn, Bong-Young;Park, Hae-Won;Kim, Young-Joo;Kim, Kuk-Jin;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.6
    • /
    • pp.573-580
    • /
    • 2004
  • The main goal of this study was to develop a micro-fabrication process for the capacitive micromachined ultrasonic transducer (cMUT). In order to achieve this goal, the former research results of the micro-electro-mechanical system (MEMS) process for the cMUT were analyzed. The membrane deposition, sacrificial layer deposition and etching were found to be a main process of fabricating the cMUT. The optimal conditions for those microfabrication were determined by the experiment. The thickness, uniformity, and residual stress of the $Si_3N_3$ deposition which forms the membrane of the cMUT were characterized after growing the $Si_3N_3$ on Si-wafer under various process conditions. As a sacrificial layer, the growth rate of the $SiO_2$ deposition was analyzed under several process conditions. The optimal etching conditions of the sacrificial layer were analyzed. The microfabrication process developed in this study will be used to fabricate the cMUT.

Development of Capacitive Micromachined Ultrasonic Transducer (I) - Analysis of the Membrane Behavior (미세가공 정전용량형 초음파 탐촉자 개발(I) - 진동 막 거동 분석)

  • Kim, Ki-Bok;Ahn, Bong-Young;Park, Hae-Won;Kim, Young-Joo;Lee, Seung-Seok
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.5
    • /
    • pp.487-493
    • /
    • 2004
  • This study was conducted to develope a capacitive micromachined ultrasonic transducer (cMUT) which enable to high efficient non-contact transmit and receive the ultrasonic wave in air. Theoretical analysis and finite element analysis of the behavior of membrane (such as resonance frequency, membrane deflection, collapse deflection and collapse voltage) of the cMUT were performed. The design parameters of the cMUT such as the dimension and thickness of membrane, thickness of sacrificial layer, thickness and size of electrode were estimated. The resonance frequency of the membrane increased as the thickness of the membrane increased but decreased as the diameter of the membrane increased. The deflection of the membrane increased as d-c bias voltage increased. The collapse voltage of the membrane was analyzed.