Browse > Article
http://dx.doi.org/10.4313/TEEM.2017.18.2.78

A Simple Analytical Model for MEMS Cantilever Beam Piezoelectric Accelerometer and High Sensitivity Design for SHM (structural health monitoring) Applications  

Raaja, Bhaskaran Prathish (Department of Electronics and Instrumentation Engineering, Annamalai University)
Daniel, Rathnam Joseph (Department of Electronics and Instrumentation Engineering, Annamalai University)
Sumangala, Koilmani (Department of Civil and Structural Engineering, Annamalai University)
Publication Information
Transactions on Electrical and Electronic Materials / v.18, no.2, 2017 , pp. 78-88 More about this Journal
Abstract
Cantilever beam MEMS piezoelectric accelerometers are the simplest and most widely used accelerometer structure. This paper discusses the design of a piezoelectric accelerometer exclusively for SHM applications. While such accelerometers need to operate at a lower frequency range, they also need to possess high sensitivity and low noise floor. The availability of a simple model for deflection, charge, and voltage sensitivities will make the accelerometer design procedure less cumbersome. However, a review of the open literature suggests that such a model has not yet been proposed. In addition, previous works either depended on FEM analysis or only reported on the fabrication and characterization of piezoelectric accelerometers. Hence, this paper presents, for the first time, a simple analytical model developed for the deflection, induced voltage, and charge sensitivity of a cantilever beam piezoelectric accelerometer.The model is then verified using FEM analysis for a range of different cases. Further, the model was validated by comparing the induced voltages of an accelerometer estimated using this model with experimental voltages measured in the accelerometer after fabrication. Subsequently, the design of an accelerometer is demonstrated for SHM applications using the analytical model developed in this work. The designed accelerometer has 60 mV/g voltage sensitivity and 2.4 pC/g charge sensitivity, which are relatively high values compared to those of the piezoresistive and capacitive accelerometers for SHM applications reported earlier.
Keywords
SHM (structural health monitoring); Cantilever beam; MEMS; Piezoelectric accelerometer; Peak voltage; Charge sensitivity;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. Sabato, M. Q. Feng, Y. Fukuda, D. L. Carni, and G. Fortino, IEEE Sensors Journal, 16, 2942 (2016). [DOI: http://citeweb.info/20160246898]   DOI
2 Z. Herrasti, I. Val, I. Gabilondo, J. Berganzo, A. Arriola, and F. Martínez, Sensor. Actuat. A, 247, 604 (2016). [DOI: http://dx.doi.org/10.1016/j.sna.2016.06.027]   DOI
3 J. P. Lynch, A. Partridge, and K. H. Law, J. Aero. Eng., 16, 108 (2003). [DOI: http://dx.doi.org/10.1061/(ASCE)0893-1321(2003)16:3(108)]   DOI
4 E. Guzman, J. Cugnoni, and T. Gmur, Smart Mater. Struct., 24, 055017 (2015). [DOI: http://dx.doi.org/10.1088/0964-1726/24/5/055017]   DOI
5 Z. Shen, C. Y. Tan, K. Yao, L. Zhang, and Y. F. Chen, Sensor. Actuat. A, 241, 113 (2016). [DOI: http://dx.doi.org/10.1016/j.sna.2016.02.022]   DOI
6 M. Giammarini, D. Isidori, M. Pieralisi, C. Cristalli, M. Fioravanti, and E. Concettoni, Microsys. Technol., 22, 1845, (2016). [DOI: http://dx.doi.org/10.1007/s00542-016-2859-6]   DOI
7 R. Reus, J. Micromech. Microeng., 9, 123 (1999). [DOI : http://dx.doi.org/10.1088/0960-1317/9/2/005]   DOI
8 A. Iula and N. Lamberti, IEEE/ASME transactions on mechatronics, 4, 207 (1999). [DOI: http://dx.doi.org/10.1109/3516.769547]   DOI
9 M. J. Vellekooi, C.C.G. Visser, P. M. Sarro, and A. Venema, Sensor. Actuat., A21, 1027 (1990). [DOI: http://dx.doi.org/10.1016/0924-4247(90)87083-u]
10 T. Xu, G. Wu, G. Zhang, and Y. Hao, Sensor. Actuat. A, 104, 61 (2003). [DOI: http://dx.doi.org/10.1016/S0924-4247(02)00484-3]   DOI
11 L. P. Wang, R. A. Wolf J r., and Y. Wang, Journal of microelectromechanical systems, 12, 433 (2003). [DOI: http://dx.doi.org/10.1109/JMEMS.2003.811749]   DOI
12 Y. Nemirosky, A. Nemirovsky, P. Maralt, and N. Setter, Sensor. Actuat., A56, 239 (1996). [DOI: http://dx.doi.org/10.1016/S0924-4247(96)01324-6]
13 Y. R. Wong, Y. Yuan, H. Du, and X. Xia, Sensor. Actuat. A, 229, 23 (2015). [DOI: http://dx.doi.org/10.1016/j.sna.2015.03.012]   DOI
14 T. Kobayashi, H. Okada, T. Masuda, R. Maeda, and T. Itoh, Smart Mater. Struct., 20, 065017 (2011). [DOI: http://dx.doi.org/10.1088/0964-1726/20/6/065017]   DOI
15 S. Kavitha, R. J. Daniel, and K. Sumangala, Measurement, 46, 3372 (2013). [DOI : h t tp://dx.doi.org/10.1016/j.measurement.2013.05.013]   DOI
16 S. Kavitha, R. J. Daniel, and K. Sumangala, Sensors & Transducers Journal, 144, 62 (2012).
17 S. Kavitha, R. J. Daniel, and K. Sumangala, Mehanical Systems and Signal Processing, 66, 410 (2016). [DOI: http://dx.doi.org/10.1016/j.ymssp.2015.06.005]
18 J. Y. Wang, T. T. Wang, and H. Guo, Key Engineering Materials, 645, 841 (2015). [DOI. 10.4028/www.scientific.net/KEM.645-646.841]
19 P. Muralt, IEEE transactions on ultrasonics, ferroelectrics, and frequency control, 47, 903 (2000). [DOI: http://dx.doi.org/10.1109/58.852073]   DOI
20 C. C. Lee, G. Z. Cao, and I. Y. Shen, Sensor. Actuat. A, 159, 88 (2010). [DOI: http://dx.doi.org/10.1016/j.sna.2010.02.022]   DOI
21 S. P. Beeby, N. J. Grabham, and N. M. White, Sensor. Actuat. A, 92, 168 (2001). [DOI: http://dx.doi.org/10.1016/S0924-4247(01)00559-3]   DOI
22 K. Kunz, P. Enoksson, and G. Stemme, Sensor. Actuat. A, 92, 156 (2001). [DOI: http://dx.doi.org/10.1016/S0924-4247(01)00555-6]   DOI
23 Ph. Luginbuhl, G. A. Racine, Ph. Lerch, and B. Romanowicz, Sensor. Actuat. A, 54, 530 (1996). [DOI: http://dx.doi.org/10.1109/ISAF.1994.522419]   DOI
24 M. Sobocinski, M. Leinonen, J. Juuti, N. Mantyniemi, and H. Jantunen, Sensor. Actuat. A, 216, 370 (2014). [DOI: http://dx.doi.org/10.1016/j.sna.2014.06.017]   DOI
25 Q. Q. Zhang, S. J. Gross, and S. Tadigadapa, Sensor. Actuat. A, 105, 91 (2003). [DOI:10.1016/S0924-4247(03)00068-2]   DOI
26 H. G. Yu, L. Zou, and K. Deng, Sensor. Actuat. A, 107, 26 (2003). [DOI: http://dx.doi.org/10.1016/S0924-4247(03)00271-1]   DOI
27 J. Xie, M. Hu, S. F. Ling, and H. Du, Sensor. Actuat. A, 126, 182 (2006). [DOI: http://dx.doi.org/10.1016/j.sna.2005.09.019]   DOI
28 D. L. DeVoe, Journal of Microelectromechanical Systems, 10, 180 (2001). [DOI: http://dx.doi.org/10.1109/84.925733]   DOI
29 C. T. Pan, Z. H. Liu, Y. C. Chen, and C. F. Liu, Sensor. Actuat. A, 159, 96 (2010). [DOI: http://dx.doi.org/10.1016/j.sna.2010.02.023]   DOI
30 Y. R. Wong, Y. Yuan, H. Du, and X. Xia, Sensor. Actuat. A, 229, 23 (2015). [DOI: http://dx.doi.org/10.1016/j.sna.2015.03.012. 0924-4247]   DOI
31 K. Kim, S. Zhang, G. Salazar, and X. Jiang, Sensor. Actuat. A, 178, 40 (2012). [DOI: http://dx.doi.org/10.1016/j.sna.2012.02.003]   DOI
32 J. Ryu, J. J. Choi, B. D. Hahn, W. H. Yoon, B. K. Lee, J. H. Choi, and D. S. Park, Mater. Sci. Eng. R, 170, 67 (2010). [DOI: http://dx.doi.org/10.1016/j.mseb.2010.02.028]   DOI
33 A. T. Mineto, M.P.S. Braun, H. A. Navarro, and P. S. Varoto, Proc. 9th Brazilian conference on Dynamics, Control and their Applications (Serra Negra, Brazil, 2010).
34 X. Gao, W. H. Shih, and W. Y. Shih, Smart Mater. Struct., 18, 125018 (2009). [DOI: http://dx.doi.org/10.1088/0964-1726/18/12/125018]   DOI
35 A. T. Kollias and J. N. Avaritsiotis, Sensor. Actuat. A, 121, 434 (2005). [DOI: http://dx.doi.org/10.1016/j.sna.2005.03.014]   DOI
36 W. Zhou, A. Khaliq, Y. Tang, H. Ji, and R. R. Selmic, Sensor. Actuat. A, 125, 69 (2005). [DOI: http://dx.doi.org/10.1016/j.sna.2005.07.009]   DOI
37 http://www.comsol.com
38 T. H. Sung, J. C. Huang, J. H. Hsu, S. R. Jian, and T. G. Nieh, Appl. Phys. Lett., 100, 211903 (2012). [DOI: http://dx.doi.org/10.1063/1.4720169]   DOI
39 R. Schulze, M. Heinrich, and P. Nossol, Sensor. Actuat. A, 208, 159 (2014). [DOI: http://dx.doi.org/10.1016/j.sna.2013.12.032.]   DOI