• Title/Summary/Keyword: Camera-based Recognition

Search Result 593, Processing Time 0.025 seconds

A Survey of Human Action Recognition Approaches that use an RGB-D Sensor

  • Farooq, Adnan;Won, Chee Sun
    • IEIE Transactions on Smart Processing and Computing
    • /
    • v.4 no.4
    • /
    • pp.281-290
    • /
    • 2015
  • Human action recognition from a video scene has remained a challenging problem in the area of computer vision and pattern recognition. The development of the low-cost RGB depth camera (RGB-D) allows new opportunities to solve the problem of human action recognition. In this paper, we present a comprehensive review of recent approaches to human action recognition based on depth maps, skeleton joints, and other hybrid approaches. In particular, we focus on the advantages and limitations of the existing approaches and on future directions.

A Study on Portable Green-algae Remover Device based on Arduino and OpenCV using Do Sensor and Raspberry Pi Camera (DO 센서와 라즈베리파이 카메라를 활용한 아두이노와 OpenCV기반의 이동식 녹조제거장치에 관한 연구)

  • Kim, Min-Seop;Kim, Ye-Ji;Im, Ye-Eun;Hwang, You-Seong;Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.17 no.4
    • /
    • pp.679-686
    • /
    • 2022
  • In this paper, we implemented an algae removal device that recognizes and removes algae existing in water using Raspberry Pi camera and DO (Dissolved Oxygen) sensor. The Raspberry Pi board recognizes the color of green algae by converting the RGB values obtained from the camera into HSV. Through this, the location of the algae is identified and when the amount of dissolved oxygen's decrease at the location is more than the reference value using the DO sensor, the algae removal device is driven to spray the algae removal solution. Raspberry Pi's camera uses OpenCV, and the motor movement is controlled according to the output value of the DO sensor and the result of the camera's green algae recognition. Algae recognition and spraying of algae removal solution were implemented through Arduino and Raspberry Pi, and the feasibility of the proposed portable algae removal device was verified through experiments.

Autonomous Driving Platform using Hybrid Camera System (복합형 카메라 시스템을 이용한 자율주행 차량 플랫폼)

  • Eun-Kyung Lee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.6
    • /
    • pp.1307-1312
    • /
    • 2023
  • In this paper, we propose a hybrid camera system that combines cameras with different focal lengths and LiDAR (Light Detection and Ranging) sensors to address the core components of autonomous driving perception technology, which include object recognition and distance measurement. We extract objects within the scene and generate precise location and distance information for these objects using the proposed hybrid camera system. Initially, we employ the YOLO7 algorithm, widely utilized in the field of autonomous driving due to its advantages of fast computation, high accuracy, and real-time processing, for object recognition within the scene. Subsequently, we use multi-focal cameras to create depth maps to generate object positions and distance information. To enhance distance accuracy, we integrate the 3D distance information obtained from LiDAR sensors with the generated depth maps. In this paper, we introduce not only an autonomous vehicle platform capable of more accurately perceiving its surroundings during operation based on the proposed hybrid camera system, but also provide precise 3D spatial location and distance information. We anticipate that this will improve the safety and efficiency of autonomous vehicles.

Emotion Recognition by Vision System (비젼에 의한 감성인식)

  • 이상윤;오재흥;주영훈;심귀보
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.203-207
    • /
    • 2001
  • In this Paper, we propose the neural network based emotion recognition method for intelligently recognizing the human's emotion using CCD color image. To do this, we first acquire the color image from the CCD camera, and then propose the method for recognizing the expression to be represented the structural correlation of man's feature Points(eyebrows, eye, nose, mouse) It is central technology that the Process of extract, separate and recognize correct data in the image. for representation is expressed by structural corelation of human's feature Points In the Proposed method, human's emotion is divided into four emotion (surprise, anger, happiness, sadness). Had separated complexion area using color-difference of color space by method that have separated background and human's face toughly to change such as external illumination in this paper. For this, we propose an algorithm to extract four feature Points from the face image acquired by the color CCD camera and find normalization face picture and some feature vectors from those. And then we apply back-prapagation algorithm to the secondary feature vector. Finally, we show the Practical application possibility of the proposed method.

  • PDF

Integrated Context Awareness by Sharing Information between Cameras (카메라간 정보공유를 통한 종합적인 상황인식)

  • An, Tae-Ki;Shin, Jeong-Ryol;Han, Seok-Youn;Lee, Gil-Jae
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1360-1365
    • /
    • 2008
  • Most recognition algorithms for intelligent surveillance system are based on analysis of the video collected from one camera. Video analysis is also used to compute the internal parameters used in the recognition process. The algorithm computes only the video of the fixed area so that it is a insufficient method and it could not use information of the related areas. However, intelligent integrated surveillance system should be constructed to correlate the events in the other areas as well as in the fixed area. In this paper, in order to construct the intelligent integrated surveillance system, we describe the method not to focus on the video of each camera but to aware the whole event by sharing information between cameras, which is more accurate. The method would be used to aware the event in the fixed area such as stations in urban transit.

  • PDF

Kinect-based Motion Recognition Model for the 3D Contents Control (3D 콘텐츠 제어를 위한 키넥트 기반의 동작 인식 모델)

  • Choi, Han Suk
    • The Journal of the Korea Contents Association
    • /
    • v.14 no.1
    • /
    • pp.24-29
    • /
    • 2014
  • This paper proposes a kinect-based human motion recognition model for the 3D contents control after tracking the human body gesture through the camera in the infrared kinect project. The proposed human motion model in this paper computes the distance variation of the body movement from shoulder to right and left hand, wrist, arm, and elbow. The human motion model is classified into the movement directions such as the left movement, right movement, up, down, enlargement, downsizing. and selection. The proposed kinect-based human motion recognition model is very natural and low cost compared to other contact type gesture recognition technologies and device based gesture technologies with the expensive hardware system.

Human-Object Interaction Framework Using RGB-D Camera (RGB-D 카메라를 사용한 사용자-실사물 상호작용 프레임워크)

  • Baeka, Yong-Hwan;Lim, Changmin;Park, Jong-Il
    • Journal of Broadcast Engineering
    • /
    • v.21 no.1
    • /
    • pp.11-23
    • /
    • 2016
  • Recent days, touch interaction interface is the most widely used interaction interface to communicate with digital devices. Because of its usability, touch technology is applied almost everywhere from watch to advertising boards and it is growing much bigger. However, this technology has a critical weakness. Normally, touch input device needs a contact surface with touch sensors embedded in it. Thus, touch interaction through general objects like books or documents are still unavailable. In this paper, a human-object interaction framework based on RGB-D camera is proposed to overcome those limitation. The proposed framework can deal with occluded situations like hovering the hand on top of the object and also moving objects by hand. In such situations object recognition algorithm and hand gesture algorithm may fail to recognize. However, our framework makes it possible to handle complicated circumstances without performance loss. The framework calculates the status of the object with fast and robust object recognition algorithm to determine whether it is an object or a human hand. Then, the hand gesture recognition algorithm controls the context of each object by gestures almost simultaneously.

Image Tracking Based Lane Departure Warning and Forward Collision Warning Methods for Commercial Automotive Vehicle (이미지 트래킹 기반 상용차용 차선 이탈 및 전방 추돌 경고 방법)

  • Kim, Kwang Soo;Lee, Ju Hyoung;Kim, Su Kwol;Bae, Myung Won;Lee, Deok Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.2
    • /
    • pp.235-240
    • /
    • 2015
  • Active Safety system is requested on the market of the medium and heavy duty commercial vehicle over 4.5ton beside the market of passenger car with advancement of the digital equipment proportionally. Unlike the passenger car, the mounting position of camera in case of the medium and heavy duty commercial vehicle is relatively high, it is disadvantaged conditions for lane recognition in contradiction to passenger car. In this work, we show the method of lane recognition through the Sobel edge, based on the spatial domain processing, Hough transform and color conversion correction. Also we suggest the low error method of front vehicles recognition in order to reduce the detection error through Haar-like, Adaboost, SVM and Template matching, etc., which are the object recognition methods by frontal camera vision. It is verified that the reliability over 98% on lane recognition is obtained through the vehicle test.

Efficient Mobile Writing System with Korean Input Interface Based on Face Recognition

  • Kim, Jong-Hyun
    • Journal of the Korea Society of Computer and Information
    • /
    • v.25 no.6
    • /
    • pp.49-56
    • /
    • 2020
  • The virtual Korean keyboard system is a method of inputting characters by touching a fixed position. This system is very inconvenient for people who have difficulty moving their fingers. To alleviate this problem, this paper proposes an efficient framework that enables keyboard input and handwriting through video and user motion obtained through the RGB camera of the mobile device. To develop this system, we use face recognition to calculate control coordinates from the input video, and develop an interface that can input and combine Hangul using this coordinate value. The control position calculated based on face recognition acts as a pointer to select and transfer the letters on the keyboard, and finally combines the transmitted letters to integrate them to perform the Hangul keyboard function. The result of this paper is an efficient writing system that utilizes face recognition technology, and using this system is expected to improve the communication and special education environment for people with physical disabilities as well as the general public.

Monocular Camera based Real-Time Object Detection and Distance Estimation Using Deep Learning (딥러닝을 활용한 단안 카메라 기반 실시간 물체 검출 및 거리 추정)

  • Kim, Hyunwoo;Park, Sanghyun
    • The Journal of Korea Robotics Society
    • /
    • v.14 no.4
    • /
    • pp.357-362
    • /
    • 2019
  • This paper proposes a model and train method that can real-time detect objects and distances estimation based on a monocular camera by applying deep learning. It used YOLOv2 model which is applied to autonomous or robot due to the fast image processing speed. We have changed and learned the loss function so that the YOLOv2 model can detect objects and distances at the same time. The YOLOv2 loss function added a term for learning bounding box values x, y, w, h, and distance values z as 클래스ification losses. In addition, the learning was carried out by multiplying the distance term with parameters for the balance of learning. we trained the model location, recognition by camera and distance data measured by lidar so that we enable the model to estimate distance and objects from a monocular camera, even when the vehicle is going up or down hill. To evaluate the performance of object detection and distance estimation, MAP (Mean Average Precision) and Adjust R square were used and performance was compared with previous research papers. In addition, we compared the original YOLOv2 model FPS (Frame Per Second) for speed measurement with FPS of our model.