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Abstract: Human action recognition from a video scene has remained a challenging problem in the 
area of computer vision and pattern recognition. The development of the low-cost RGB depth 
camera (RGB-D) allows new opportunities to solve the problem of human action recognition. In 
this paper, we present a comprehensive review of recent approaches to human action recognition 
based on depth maps, skeleton joints, and other hybrid approaches. In particular, we focus on the 
advantages and limitations of the existing approaches and on future directions.  
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1. Introduction 

The study of human action recognition introduces 
various new methods for understanding actions and 
activities from video data. The main concern in human 
action recognition systems is how to identify the type of 
action from a set of video sequences. Different systems 
like consumer interactive entertainment, gaming, sur-
veillance systems, smart homes, and life-care systems 
include several feasible applications [1, 2], which have 
become the utmost inspiration for researchers, who have 
hence developed algorithms for human action recognition. 

Previously, RGB cameras have always been a focal 
point of studies into identifying actions from image 
sequences taken by these cameras [3, 4]. Various con-
straints relating to 2D cameras are responsiveness to 
illumination changes, surrounding clutter, and disorder [3, 
4]. It has been a tough and difficult task to precisely 
recognize human actions. However, with the development 
of cost-effective RGB depth (RGB-D) camera sensors (e.g., 
the Microsoft Kinect), the results from action recognition 
have improved, and they have become a point of 
consideration for many researchers [5]. Depth camera 
sensors provide more discriminating and clear information 
by giving a 3D structural view from which to recognize 
action, compared to visible light cameras. Furthermore, 
depth sensors also help lessen and ease the low-level 

complications found in RGB images, such as background 
subtraction and light variations. Also, depth cameras can 
be beneficial for the entire range of day-to-day work, even 
at night, like patient monitoring systems. Depth images 
enable us to view and assess human skeleton joints in a 3D 
coordinate system. These 3D skeleton joints provide 
additional information to examine for recognition of action, 
which in turn increases the accuracy of the human–
computer interface [5]. Depth sensors, like the Kinect, 
usually provide three types of data: depth images, 3D 
skeleton joints, and color (RGB) images. So, it has been a 
big challenge to utilize these data, together or 
independently, to present human behavior and to improve 
the accuracy of action recognition. 

Human movement is classified into four levels (motion, 
action, activity, and behavior), where motion is a small 
movement of a body part for a very short time span. 
However, motion is a key factor in actions, which helps to 
identify other movement, such as the following [6]. 

An action is a collection of recurring different motions, 
which show what a person is doing, like running, sitting, 
etc., or interaction of the person with certain things. The 
duration of the action lasts no more than a few seconds.  

An activity is also an assortment of various actions that 
help in perceiving and understanding human behavior 
while performing designated tasks, like cooking, cleaning, 
studying, etc., which are activities that can continue for 

mailto:fisherp%7d@wssu.edu


Farooq et al.: A Survey of Human Action Recognition Approaches that use an RGB-D Sensor 

 

282

much longer times. 
Behavior is extremely meaningful in understanding 

human motion that can last for hours (or even days) and 
that can be considered either normal or abnormal. 

Action, activity and behavior can be differentiated on 
the basis of supportive dissimilar features concerning time 
scales. In this study, we focus on shorter and medium time 
period actions, such as raising a hand or sitting down. 

Human action recognition has been mainly focused on 
three leading applications: 1) surveillance systems, 2) 
entertainment environments, and 3) healthcare systems, 
which comprise systems to track or follow individuals 
automatically [2, 7-14]. In a surveillance system, the 
authorities need to monitor and detect all kinds of criminal 
and suspicious activities [2, 7, 8]. Most surveillance 
systems, equipped with several cameras, require well-
trained staff to monitor human actions on screen. However, 
using automatic human action recognition algorithms, it is 
possible to reduce the number of staff and immediately 
create a security alert in order to prevent dangerous 
situations. Furthermore, human action recognition systems 
can also be used to identify entertainment actions, 
including sports, dance and gaming. For entertainment 
actions, response time to interact with a game is very 
important. Thus, a number of techniques have been 
developed to address this issue using depth sensors [9, 10]. 
In healthcare systems, it is important to monitor the 
activities of a patient [11, 12]. The aim of using such 
healthcare systems is to assist the health workers to care 
for, treat, and diagnose patients, hence, improving the 
reliability of diagnosis. These medical healthcare systems 
can also help decrease the work load on medical staff and 
provide better facilities to patients. 

Generally, human action–recognition approaches involve 
several steps, as shown in Fig. 1, where feature extraction 
is one of the important blocks, which performs a vital role 
in the action recognition system. The performance of 
feature extraction methods for an action recognition 
system is evaluated on the basis of classification accuracy. 
Several available datasets, recorded from depth sensors, 
are widely available and accessible for developing an 
innovative recognition system. 

Every dataset includes different actions and activities 
performed by different volunteer subjects, and each dataset 
is designed to resolve a particular challenge. Table 1 
provides a summary of the most popular datasets. Most of 
the methods reviewed in this paper are evaluated on one or 
more of these datasets. In this survey, we review human 
action recognition systems that have been proposed to 
recognize human actions. This review paper is organized 
as follows. In Section 2, we review human action systems 
based on depth maps, skeleton joints, and hybrid methods 

(i.e., depth and color, depth and skeleton). A summary of 
all the reviewed work is presented in Section 3, which 
includes the advantages and disadvantages of each 
reviewed method. The conclusion is presented in Section 4. 

2. Human Action Recognition 

2.1 Human Action Recognition Using 
Depth Maps 

Li et al. [18] introduced a method that recognizes 
human actions from depth sequences. The motivation of 
this work was to develop a method that does not require 
joint tracking. It also uses 3D contour points instead of 2D 
points. Depth maps are projected on three orthogonal 
Cartesian planes, and a specified number of points along 
the contours of all three projections are sampled for each 
frame. These sampled points are then used as a “bag-of-
points” to illustrate a set of salient postures that correspond 
to the nodes of an action graph used to model the dynamics 
of the actions. The authors used their own dataset for the 
experiments, which later became known as the Microsoft 
Research (MSR) Action3D dataset, and they achieved a 

Fig. 1. Flow of an action recognition system. 

 

Table 1. Publicly available RGB-D datasets for evaluating
action recognition systems. 

Datasets Size Remarks 

Microsoft  
Research  

Action3D [13]

10 subjects/ 
20 actions/ 

2-3 repetitions 

There are a total of 567 
depth map sequences with 
a resolution of 320x240. 
The dataset was recorded 
using the Kinect sensor. 
All are interactions with 

game consoles (i.e. draw a 
circle, two-hand wave, 

forward kick, etc.). 

Microsoft  
Research Daily 

Activity  
3D [14] 

10 subjects/  
16 activities/ 
2 repetitions 

16 indoor activities were 
done by 10 subjects. Each 

subject performed each 
activity once in a standing 

position and once in a 
sitting position. Three 
channels are recorded 

using the Kinect sensor: 
(i) depth maps, (ii) RGB 
video, (iii) skeleton joint 

positions. 

UT-Kinect  
Action [15] 

10 subjects/  
10 actions/  

2 repetitions 

In the UT-Kinect Action 
dataset, there are 10 

different actions with  
three channels: (i) RGB, 
(ii) depth, and (iii) 3D 

skeleton joints. 

UCF-Kinect 
[16] 

16 subjects/  
16 activities/  
5 repetitions 

The UCF-Kinect dataset 
is a long-sequence dataset 
that is used to test latency.

Kitchen scene 
action [17] 9 activities 

Different activities in the 
kitchen have been 

performed to recognize 
cooking motions. 
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74.4% recognition accuracy. The limitation of this 
approach is that the sampling of 3D points from the whole 
body requires a large dataset. Also, due to noise and 
occlusion in the depth maps, YZ and XZ views may not be 
reliable for extracting 3D points. 

To overcome some of the issues [13] in Table 1, Vieira 
et al. [18] proposed space–time occupancy patterns 
(STOP) to represent the sequence of depth maps, where 
the space and time axes are divided into multiple segments 
so that each action sequence is embedded in a multiple 4D 
grid. In order to enhance the role of spare cells, a 
saturation scheme was proposed, which typically consists 
of points on a silhouette or moving parts of the body. To 
recognize the actions, a nearest neighbor classifier based 
on cosine distance was employed. Experimental results on 
the MSR Action3D dataset show that STOP features for 
action classification yield better accuracy than that of 
Rougier et al. [12]. The major drawback to this approach is 
that they empirically set the parameter for dividing 
sequences into cells. 

A method that addresses the noise and occlusion issues 
in action recognition systems using depth images was 
proposed by Wang et al. [19]. The authors considered a 3D 
action sequence as a 4D shape and proposed random 
occupancy pattern (ROP) features extracted from 
randomly sampled 4D sub-volumes of different sizes and 
at different locations using a weighted sampling scheme. 
An elastic-net regularized classification is then modeled to 
further select the most discriminative features, which are 
robust to noise and less sensitive to occlusions. Finally, 
support vector machine (SVM) is used to recognize the 
actions. Experimental results on the MSR Action3D 
dataset show that the proposed method outperforms 
previous methods by Li et al. [13] and Vieira et al. [18]. 

An action recognition system that is capable of 
extracting additional shape and motion information using 
3D depth maps was proposed by Yang et al. [20]. In this 
system, each 3D depth map is first projected onto three 
orthogonal Cartesian planes. Each projected view is 
generated by thresholding the difference of consecutive 
depth frames and stacks to obtain a depth motion map 
(DMM) for each projected view. A histogram of oriented 
gradients (HOG) [21] is then applied to each 2D projected 
view to extract the features. Furthermore, the features from 
all three views are then concatenated to form a DMM-
HOG descriptor. An SVM classifier is used to recognize 
the actions. Steps for extracting the HOG from the DMM 
are shown in Fig. 2. The drawback of this system is that 
their approach does not show the direction of the variation. 
Also, the authors explored the number of frames required 
to generate satisfactory results, which showed that roughly 
35 frames are enough to generate acceptable results. 
Nonetheless, it cannot be applied to complex actions to get 
satisfactory results.  

Ahmad et al. [22] employed an R transform [23] to 
compute a 2D angular projection map of an activity 
silhouette via Radon transform and to compare the 
proposed method with other feature extraction methods (i.e. 
PCA and ICA) [24, 25]. The authors argue that PCA and 
ICA are sensitive to scale and translation using depth 
silhouettes. Therefore, a 2D Radon transform converts into 

a 1D R transform profile to provide a highly compact 
shape representation for each depth silhouette. That is, to 
extract suitable features from the 1D R transformed 
profiles of depth silhouettes, linear discriminant analysis 
(LDA) is used to make the features more discriminative. 
Finally, the features are trained and tested using hidden 
Markov models (HMMs) [26] on the codebook of vectors 
generated using the Linde-Buzo-Gray (LBG) clustering 
algorithm [27] for recognition. Fig. 3 shows the overall 
flow of the proposed method. Experimental results show 
that their feature extraction method is robust on the 10 
human activities collected by the authors. Using this 
dataset, they achieved an accuracy of 96.55%. The 
limitation to this system is that the proposed method is 
view-dependent.  

Using depth sequences, a new feature descriptor named 
histogram of oriented 4D surface normal (HON4D) was 
proposed by Oreifej and Liu [28]. The proposed feature 
descriptor is more discriminative than the average 4D 
occupancy [18] and is robust against noise and occlusion 
[18]. HON4D features consider the 3D depth sequences as 
a surface in 4D spatio-temporal space–time, depth and 
spatial coordinates. In order to construct HON4D, the 4D 
space is quantized using the 120 vertices of a 600-cell 
polychoron. Then, the quantization is refined using a 
discriminative density measure by inducing additional 
projectors in the direction, where the 4D normal is denser 
and more discriminative. An SVM classifier is used to 
recognize the actions. Experimental results show that 
HON4D achieves high accuracy compared to state-of-the-
art methods. The limitation to this system is that HON4D 
can only roughly characterize the local spatial shape 
around each joint to represent human–object interaction. 
Also, differential operation on depth images can enhance 
noise. 

Fig. 2. Histogram of oriented gradients descriptor on 
motion maps. 

 

Fig. 3. Framework of the human activity recognition 
system using R transform [22]. 
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Xia et al. [29] proposed an algorithm for extracting 
local spatio-temporal interest points (STIPs) from depth 
videos (DSTIPs) and described a local 3D depth cuboid 
using the depth cuboid similarity feature (DCSF). The 
DSTIPs deal with the noise in the depth videos, and DCSF 
was presented as a descriptor for the 3D local cuboid in 
depth videos. The authors claimed that the DSTIPs+DCSF 
pipeline recognizes activities from the depth videos 
without depending on skeleton joint information, motion 
segmentation, tracking or de-noising procedures. The 
experimental results reported for the MSR Daily Activity 
3D dataset show that it is possible to recognize human 
activities using the DSTIPs and DCSF with an accuracy of 
88.20% by using 12 out of 16 activities. Four activities that 
have less motion (i.e., sitting still, reading a book, writing 
on paper, and using a laptop) were removed from the 
experiments because most of the recognition errors come 
from these relatively motionless activities. Furthermore, 
the accuracy of the proposed system is highly dependent 
on the noise level of the depth images. 

Recent work by Song et al. [30] focuses on the use of 
depth information to describe human actions in videos that 
seem to be of essential concern and can greatly influence 
the performance of human action recognition. The 3D 
point cloud is exercised because it holds points in the 3D 
real-world coordinate system to symbolize the human 
body’s outer surface. An attribute named body surface 
context (BSC) is presented to explain the sharing of 
relative locations of neighbors for a reference point in the 
point cloud. Tests using the Kinect Human Action Dataset 
resulted in an accuracy of 91.32%. Using the BSC feature, 
experiments on the MSR Action3D dataset yielded an 
average accuracy of 90.36% and an accuracy of 77.8% 
with the MSR Daily Activity 3D dataset. Experimentation 
showed that superior performance is attained with the 
tested feature and it performed robustly when observing 
variations (i.e. translation and rotation). 

2.2 Human Action Recognition Using 
Skeleton Joints 

Xia et al. [31] showed the advantages of using 3D 
skeleton joints and represented 3D human postures using a 
histogram of 3D joint locations (HOJ3D). In their 
representation, 3D space is partitioned into bins using a 
modified spherical coordinate system. That is, 12 manually 
selected joints were used to build a compact representation 
of the human posture. To make the representation more 
robust, votes of 3D skeleton joints were cast into 
neighboring bins using a Gaussian weight function. To 
extract most dominant and discriminative features, LDA 
was applied to reduce the dimensionality. These discri-
minative features were then clustered into a fixed number 
of posture vocabularies which represent the prototypical 
poses of actions. Finally, these visual words were trained 
and tested using a discrete HMM. According to reported 
experimental results on the MSR Action3D dataset, and by 
using their own proposed dataset, their proposed method 
has the salient advantage of using 3D skeleton joints of the 
human posture. However, the drawback to their method is 
its reliance on the hip joint, which might potentially 

compromise recognition accuracy due to the noise 
embedded in the estimation of hip joint location. 

In a similar way, Yang et al. [32] illustrated that 
skeleton joints are computationally inexpensive, more 
compact, and distinctive compared to depth maps. Based 
on that, the authors proposed an eigen joints–based action 
recognition system, which extracts three different kinds of 
features using skeleton joints. These features include 
posture (Fcc), motion features (Fcp) that encode spatial 
and temporal characteristics of skeleton joints, and offset 
features (Fci), which calculate the difference between a 
current pose and the initial one. Then, applying PCA to 
these joint differences to obtain eigen joints by reducing 
the redundancy and noise, the Naive-Bayes-Nearest-
Neighbor (NBNN) classifier [33] is used to recognize 
multiple action categories. Fig. 4 shows the process of 
extracting eigen joints. Also, they further explore the 
number of frames that are sufficient to recognize the action 
for their system. Experimental results on the MSR 
Action3D dataset show that a short sequence of 15-20 
frames is sufficient for action recognition. The drawback 
to this approach is, while calculating the offset feature, the 
authors assume that the initial skeleton pose is neutral, 
which is not always correct. 

Using the advantages of 3D joints, Yang et al. [32] 
proposed a compact but effective local skeleton descriptor 
that creates a pose representation invariant to any 
similarity conversion, which is, hence, view-invariant. The 
new skeletal feature, which is called skeletal quad [34], 
locally encodes the relation of joint quadruples so that 3D 
similarity invariance is assured. Experimental results of the 
proposed method verify its state-of-the-art performance in 
human action recognition using 3D joint positions. The 
proposed action recognition method was tested on broadly 
used datasets, such as the MSR Action3D dataset and 
HDM05. Experimental results with MSR Action3D using 
skeleton joints showed an average accuracy of 89.86%, 
and showed 93.89% accuracy with HDM05.  

2.3 Human Action Recognition Using 
Hybrid Methods 

The work done by Wang et al. [14] utilizes the 
advantages of both skeleton joints and point cloud 
information. Most of the actions differ mainly due to the 
objects in interactions, whereas in such cases, using only 
skeleton information is not sufficient. Moreover, to capture 

 

Fig. 4. Steps for computing eigen-joint features pro-
posed by Yang et al. [32]. 
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the intra-class variance via occupancy information, the 
authors proposed a novel actionlet ensemble model. An 
important observation made by them in terms of skeleton 
joints is that the pairwise relative positions of joints are 
more discriminative than the joint positions themselves. 
Interaction between human and environmental objects is 
characterized by a local occupancy pattern (LOP) at each 
joint. Furthermore, the proposed method is evaluated using 
the CMU MoCap dataset, the MSR Action3D dataset,   
and a new dataset called the MSR Daily Activity 3D 
dataset. Experimental results showed that their method has 
superior performance compared to previous methods. The 
drawback of their system is that it relies on skeleton 
localization, which is unreliable for posture with self-
occlusion. 

Lei at al. [35] combined depth and color features to 
recognize kitchen activities. Their method successfully 
demonstrated tracking the interactions between hands and 
objects during kitchen activities, such as mixing flour with 
water and chopping vegetables. For object recognition, the 
reported system uses a gradient kernel descriptor on both 
color and depth data. The global features are extracted by 
applying PCA on the gradient of the hand trajectories, 
which are extracted by tracking the skin characteristics, 
and local features are defined using a bag-of-words for 
snippets of trajectory gradients. All the features are then 
fed into an SVM classifier for training. The overall 
reported accuracy is 82% for combined action and object 
recognition. This work shows the initial concept of 
recognizing the object and actions in a real-world kitchen 
environment. However, using such system in real time 
requires a large dataset to train the system. 

Recently, Althloothi et al. [36] proposed a human 

activity recognition system using multi-features and 
multiple kernel learning (MKL) [37]. In order to recognize 
human actions from a sequence of RGB-D data, their 
method utilizes surface representation and a kinematics 
structure of the human body. It extracts shape features 
from a depth map using a spherical harmonics representa-
tion that describes the 3D silhouette structure, whereas the 
motion features are extracted using 3D joints that describe 
the movement of the human body. The author believes that 
segments such as forearms and the shin provide sufficient 
and compact information to recognize human activities. 
Therefore, each distal limb segment is described by 
orientation and translation with respect to the initial frame 
to create temporal features. Then, both feature sets are 
combined using an MKL technique to produce an 
optimally combined kernel matrix within the SVM for 
activity classification. The drawback to their system is that 
the shape features extracted using spherical harmonics are 
large in size. Also, at the beginning and at the end of each 
depth sequence in the MSR Action3D and MSR Daily 
Activity 3D datasets, the subject is in a stand-still position 
with small body movements. However, while generating 
the motion characteristics of an action, these small move-
ments at the beginning and at the end generate large pixel 
values, which ultimately contribute to large reconstruction 
error. 

3. Summary  

The advantages and disadvantages of the above 
reviewed methods, based on depth maps, skeleton joints, 
and hybrid approaches, are presented in Table 2. Although  

 
Table 2. Advantages and disadvantages of the existing methods. 

Feature Extraction  
Methods General comments Pros Cons 

3D sampled points 
 [13] 

Using depth silhouettes, 3D points 
have been extracted on the contour 

of the depth map. 

They extend RGB approaches to 
extract contour points on depth 
images. However, their method 

can recognize the action 
performed by single or multiple 
parts of the human body without 

tracking the skeleton joints. 

Due to noise and occlusion, 
contours of multiple views are not 
reliable, and the current sampling 

scheme is view-dependent. 

STOP: Space–Time  
Occupancy Patterns 

 [18] 

Space–time occupancy patterns 
are presented by dividing the  

depth sequence into a 4D  
space–time grid. All the cells in 

the grid have the same size. 

Spatial and temporal contextual 
information has been used to 

recognize the actions, which is 
robust against noise and occlusion.

There is no method defined to set 
the parameter for dividing the 

sequence into cells. 

Random Occupancy  
Patterns (ROP) [19] 

ROP features are extracted from 
randomly sampled 4D sub-

volumes with different sizes and 
different volumes. Then, all the 
points in the sub-volumes are 

accumulated and normalized with 
a sigmoid function. 

The proposed feature extraction 
method is robust to noise and less 

sensitive to occlusion. 

Feature patterns are highly 
complex and need more time 

during processing. 

Motion maps [20] 

Motion maps provide shape as 
well as motion information. 

However, HOG has been used to 
extract local appearance and shape 

of motion maps. 

They are computationally efficient 
action recognition systems based 
on depth maps for extraction of 

additional shape and motion 
information. 

Motion maps do not provide 
directional velocity information 

between the frames. 
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R Transform [22] 

R transform has been used to 
extract features from depth 
silhouettes, comparing the 

proposed method with PCA  
and ICA.  

R transform–based translation  
and scale-invariant feature 

extraction methods can be used 
for human activity recognition 

systems. 

The R transform–based feature 
extraction method is not view-

invariant. 

HON4D [24] 

Captures histogram distribution 
of the surface normal orientation 
in the 4D volume of time, depth 

and spatial coordinates. 

The proposed feature extraction 
method is robust against noise  

and occlusion and more 
discriminative than other 4D 
occupancy methods. Also, it 
captures the distribution of 

changing shape and motion cues 
together. 

This method can roughly 
characterize the local spatial shape 

around each joint. Differential 
operation on a depth image can 

enhance noise. 

DCSF [29] 

Extracting STIP from depth  
videos and describing local 3D 

DCSF around interest points can 
be efficiently used to recognize 

actions. 

Uses DSTIPs and DCSF to 
recognize the activities from  

depth videos without depending 
on skeleton joints, motion 

segmentation and tracking or  
de-noising procedures. 

It is difficult to analyze the  
method for full activities,  

and most of the recognition  
errors come from those activities. 

Body surface  
context (BSC) [30] 

 

3D point clouds have been used 
to represent the 3D surface of  
the body, which contains rich 

information to recognize human 
actions. 

3D point clouds of the body’s 
surface can avoid perspective 

distortion in depth images. 

It is based on different 
combinations of features for each 
dataset, but it is not feasible for 

an automatic system to select the 
combination for high accuracy. 

HOJ3D [31] 

Twelve manually selected  
skeleton joints are converted to 

 a spherical coordinate system to 
make a compact representation 

of the human posture.  

Skeleton joints are more 
informative and can achieve  
high accuracy with a smaller 

number of joints. 

Relying only on the hip joint 
might potentially compromise 

recognition accuracy.  

Eigen joints [32] 

This is an action recognition 
system that extracts  

spatiotemporal change between 
the joints. Then, PCA is used to 
obtain eigen joints by reducing 

redundancy and noise.  

It is a skeleton joint–based  
feature extraction method that 
extracts features in both spatial 

and temporal domains. It is more 
accurate and informative than 

trajectory-based methods. 

Offset feature computation 
depends on the assumption that 

the initial skeleton pose is  
neutral, which is not correct. 

Quadruples [34] 

A skeleton joint–based feature 
extraction method called skeletal 

quad ensures 3D similarity 
invariance of joint quadruples by 

local encoding using a Fisher 
kernel. 

A view-invariant descriptor  
using joint quadruples encodes 
Fisher kernel representations.  

It is not a good choice to 
completely rely on skeleton  

joints, because these 3D joints  
are noisy and fail when there  

are occlusions. 

Hybrid method  
(3D point cloud + 

 skeleton) [14] 

Local occupancy pattern (LOP) 
features are calculated from depth 
maps around the joints’ locations. 

A highly discriminative and 
translation invariant feature 
extraction method captures 

relations between the human  
body parts and the env 

ironmental objects in the 
interaction. Also, it represents  
the temporal structure of an 

individual joint. 

Heavily relying on skeleton 
localization becomes unreliable 
for postures with self-occlusion. 

Kitchen activities  
(depth + RGB) [35]  

Fine-grained kitchen activities  
are recognized using depth and 

color cues.  

It is an efficient feature  
extraction method taking 

advantage of both RGB and  
depth images to recognize  

objects and fine-grained kitchen 
activities. 

Requires a large dataset to train 
the system. 

Multi-feature  
(3D point cloud and  
skeleton joints) [36] 

This human activity recognition 
system combines spherical 

harmonics features from depth 
maps and motion features using 

3D joints.  

It is a view-invariant feature 
extraction method based on  
shape representation and the 
kinematics structure of the  
human body. That is, both  

features are fused using MKL to 
produce an optimal combined 

kernel matrix. 

Shape features are large in size, 
which may be unreliable for 
postures with self-occlusion, 
whereas it extracts motion  

features on the assumption that 
 the initial pose is in a neutral 
state, which is not the case. 
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all the above methods are capable of dealing with the 
actions and activities of daily life, there are also drawbacks 
and limitations to using depth map–based, skeleton joint–
based and hybrid methods for action recognition systems. 
Depth maps fail to recognize human actions when fine-
grained motion is required, whereas extracting 3D points at 
the contours may incur loss of inner information from the 
depth silhouettes. Furthermore, shape-based features do 
not provide any information for calculating the directional 
velocity of the action between the frames, and it is an 
important parameter for differentiating the actions. Hence, 

depth-based features are neither very efficient for, nor 
sufficient for, certain applications, such as entertainment, 
human–computer interaction, and smart healthcare systems. 
The 3D skeleton joints estimated using the depth maps are 
often noisy and may have large errors when there are 
occlusions (e.g., legs or hands crossing over each other). 
Moreover, motion information extracted using 3D joints 
alone is not sufficient to differentiate similar activities, 
such as drinking water and eating. Therefore, there is a 
need to include extra information in the feature vector to 
improve classification performance. Thus, a hybrid method 

Table 3. Summary of feature selection, classification and recognition methods 

Paper Extracted Features Feature Selection/  
Dimension reduction Clustering Classification 

[13] 3D points at the contour of  
a depth map   Action graph 

[18] Depth values PCA K-means HMM 

[19] 3D point cloud LDA Elastic net regularized 
classifier SVM 

[20] Histogram of gradients   SVM 
[22] Depth values   PCA, LDA LBG HMM 
[28] Histogram of surface normal   SVM 
[29] Histogram of depth pixels PCA K-means DS-SRC 
[30] 3D point cloud PCA K-means SVM 

[31] Histogram of 3D joints in  
spherical coordinates LDA K-means HMM 

[32] Skeleton joints PCA  NBNN 
[34] Gradient values   SVM 

[14] Low-frequency Fourier  
coefficients Actionlet ensemble  SVM 

[35] Gradient values   SVM 

[36] 3D point cloud and  
skeleton joints   SVM 

 
 

Table 4. Recognition accuracies of reviewed action recognition systems on benchmark datasets. 

Paper MSR Action3D MSR Daily  
Activity 3D 

UCF Kinect 
 dataset 

Kitchen scene  
action 

[13] 74.7%    
[18] 84.80%    
[19] 86.50%    
[20] 91.63%    
[22]     
[28] 88.89% 80%   
[29] 89.3% 83.6%   
[30] 90.36% 77.8%   
[31] 78.97%    
[32] 82.33%  97.1%  
[34] 89.86%    
[14] 88.2% 85.75%   
[35]    82% 
[36] 79.7% 93.1%   

 



Farooq et al.: A Survey of Human Action Recognition Approaches that use an RGB-D Sensor 

 

288

can be helpful by taking full advantage of using depth 
maps and 3D skeleton joints to enhance the classification 
performance of human action recognition. 

A summary of all the feature-selection, clustering and 
recognition methods used in the above reviewed papers is 
in Table 3. Because most of the studied action recognition 
systems select dominant and discriminative features using 
LDA, these features are then represented by the codebook, 
which is generated using a k-means algorithm. Finally, 
after training the system, it recognizes the learned actions 
via the trained SVM. 

The recognition accuracy of the reviewed methods on 
the datasets mentioned in Table 1 is summarized in Table 
4. The assessment method adopted by the mentioned 
works for the MSR Action3D dataset is a cross-subject test. 
This method was originally proposed by Li et al. [13] by 
dividing the 20 actions into three subsets, with each subset 
containing eight actions. For the MSR Daily Activity 3D 
dataset, all the authors verified the performance of their 
method using a leave-one-subject-out (LOSO) test. For the 
UCF Kinect dataset, 70% of the actions were used for 
training and 30% for testing. Jalal et al. [22] proposed their 
own human activity dataset and evaluated the performance 
of their proposed method using 30% video clips for 
training and 70% for testing. 

4. Conclusion 

Over the last few years, there has been a lot of work by 
researchers in the field of human action recognition using 
the low-cost depth sensor. The success of these works is 
demonstrated in entertainment systems that estimate the 
body poses and recognize facial and hand gestures, by 
smart healthcare systems to care for patients and monitor 
their activities, and in the security systems that recognize 
suspicious activities and create an alert to prevent 
dangerous situations. Different databases have been used 
by the authors to test the performance of their algorithms. 
For the MSR Action3D dataset, Yang et al. [20] achieved 
91.63% accuracy, whereas for the MSR Daily Activity 3D 
dataset, Althloothi et al. [36] achieved 93.1% accuracy. 
Moreover, Yang et al. [32] achieved 97.1% accuracy for 
the UCF Kinect dataset. Currently, human action systems 
focus only on extracting boundary information from depth 
silhouettes. However, using only skeleton information may 
not be feasible, because the skeleton joints are not always 
accurate. Furthermore, to overcome the limitations and 
drawbacks of the current human action recognition sys-
tems, it is necessary to extract valuable information from 
inside the depth silhouettes. Also, it is necessary to use the 
joint points with the depth silhouettes for an accurate and 
stable human action recognition system. 
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