• Title/Summary/Keyword: CVD-graphene

Search Result 143, Processing Time 0.029 seconds

Direct Growth of Graphene on Boron Nitride/Copper by Chemical Vapor Deposition

  • Jin, Xiaozhan;Park, J.;Kim, W.;Hwang, Chanyong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2013.02a
    • /
    • pp.590-590
    • /
    • 2013
  • Direct growth of graphene using CVD method has been done on CVD grown boron nitride substrate. From the SEM image, we have shown that the size of grain of graphene could be clearly controlled by varying the amount of injected hydrocarbon. To convince the existence of graphene on boron nitride, XPS and Raman has been checked. Both B1s and N1s peaks in XPS spectra and the Raman peak around 1,370 $cm^{-1}$ demonstrated that boron nitride did remain after high temperature treatment during the graphene growth process. And along the graphene grain boundary, the Raman fingerprint of graphene was neatly appeared.

  • PDF

Fabrication of Graphene Field-effect Transistors with Uniform Dirac Voltage Close to Zero (균일하고 0 V에 가까운 Dirac 전압을 갖는 그래핀 전계효과 트랜지스터 제작 공정)

  • Park, Honghwi;Choi, Muhan;Park, Hongsik
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.204-208
    • /
    • 2018
  • Monolayer graphene grown via chemical vapor deposition (CVD) is recognized as a promising material for sensor applications owing to its extremely large surface-to-volume ratio and outstanding electrical properties, as well as the fact that it can be easily transferred onto arbitrary substrates on a large-scale. However, the Dirac voltage of CVD-graphene devices fabricated with transferred graphene layers typically exhibit positive shifts arising from transfer and photolithography residues on the graphene surface. Furthermore, the Dirac voltage is dependent on the channel lengths because of the effect of metal-graphene contacts. Thus, large and nonuniform Dirac voltage of the transferred graphene is a critical issue in the fabrication of graphene-based sensor devices. In this work, we propose a fabrication process for graphene field-effect transistors with Dirac voltages close to zero. A vacuum annealing process at $300^{\circ}C$ was performed to eliminate the positive shift and channel-length-dependence of the Dirac voltage. In addition, the annealing process improved the carrier mobility of electrons and holes significantly by removing the residues on the graphene layer and reducing the effect of metal-graphene contacts. Uniform and close to zero Dirac voltage is crucial for the uniformity and low-power/voltage operation for sensor applications. Thus, the current study is expected to contribute significantly to the development of graphene-based practical sensor devices.

Graphene for MOS Devices

  • Jo, Byeong-Jin
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2012.05a
    • /
    • pp.67.1-67.1
    • /
    • 2012
  • Graphene has attracted much attention for future nanoelectronics due to its superior electrical properties. Owing to its extremely high carrier mobility and controllable carrier density, graphene is a promising material for practical applications, particularly as a channel layer of high-speed FET. Furthermore, the planar form of graphene is compatible with the conventional top-down CMOS fabrication processes and large-scale synthesis by chemical vapor deposition (CVD) process is also feasible. Despite these promising characteristics of graphene, much work must still be done in order to successfully develop graphene FET. One of the key issues is the process technique for gate dielectric formation because the channel mobility of graphene FET is drastically affected by the gate dielectric interface quality. Formation of high quality gate dielectric on graphene is still a challenging. Dirac voltage, the charge neutral point of the device, also strongly depends on gate dielectrics. Another performance killer in graphene FET is source/drain contact resistance, as the contact resistant between metal and graphene S/D is usually one order of magnitude higher than that between metal and silicon S/D. In this presentation, the key issues on graphene-based FET, including organic-inorganic hybrid gate dielectric formation, controlling of Dirac voltage, reduction of source/drain contact resistance, device structure optimization, graphene gate electrode for improvement of gate dielectric reliability, and CVD graphene transfer process issues are addressed.

  • PDF

Study on the Synthesis of Graphene Nanowall by Controlling Electric Field in a Radio Frequency Plasma CVD Process (RF 플라즈마 CVD 프로세스의 전계제어에 의한 그래핀 나노월 성장 연구)

  • Han, SangBo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.9
    • /
    • pp.45-51
    • /
    • 2014
  • This work carried out for the effective synthesis characteristics of graphene nanowall film by controlling the electric field in a RF plasma CVD process. For that, the bipolar bias voltage was applied to the substrate such as Si and glass materials for the best chemical reaction of positive and negative charges existing in the plasma. For supplying the seed formation sites on substrate and removing the oxidation layer on the substrate surface, the electron bombardment into substrates was performed by a positive few voltage in hydrogen plasma. After that, hydrocarbon film, which is not a graphene nanowall, was deposited on substrates under a negative bias voltage with hydrogen and methane gases. At this step, the film on substrates could not easily identify due to its transparent characteristics. However, the transparent film was easily changed into graphene nanowall by the final hydrogen plasma treatment process. The resultant raman spectra shows the existence of significant large 2D peaks corresponding to the graphene.

Optical-reflectance Contrast of a CVD-grown Graphene Sheet on a Metal Substrate (금속 기판에 화학증기증착법으로 성장된 그래핀의 광학적 반사 대비율)

  • Lee, Chang-Won
    • Korean Journal of Optics and Photonics
    • /
    • v.32 no.3
    • /
    • pp.114-119
    • /
    • 2021
  • A large-area graphene sheet has been successfully grown on a copper-foil substrate by chemical vapor deposition (CVD) for industrial use. To screen out unsatisfactory graphene films as quickly as possible, noninvasive optical characterization in reflection geometry is necessary. Based on the optical conductivity of graphene, developed by the single-electron tight-binding method, we have investigated the optical-reflectance contrast. Depending on the four independent control parameters of layer number, chemical potential, hopping energy, and temperature, the optical-reflectance contrast can change dramatically enough to reveal the quality of the grown graphene sheet.

Development of Integration Pressure Sensor Using Piezoresistive Effect of Chemical Vapor Deposition (CVD) Produced Multilayer Graphene (CVD공정으로 제작된 멀티레이어 그래핀의 압저항 효과를 이용한 직접화된 압력센서 개발)

  • Dae-Yun Lim;Tae Won Ha;Chil-Hyoung Lee
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.470-474
    • /
    • 2023
  • In this study, a diaphragm-type pressure sensor was developed using multi-layer(four-layer) graphene produced at 1 nm thickness by thermally transferring single-layer graphene produced by chemical vapor deposition (CVD) to a 6" silicon wafer. By measuring the gauge factor, we investigated whether it was possible to produce a pressure sensor of consistent quality. As a result of the measurement, the pressure sensor using multilayer graphene showed linearity and had a gauge factor of about 17.5. The gauge factor of the multilayer graphene-based pressure sensor produced through this study is lower than that of doped silicon, but is more sensitive than a general metal sensor, showing that it can be sufficiently used as a commercialized sensor.

Layer Controlled Synthesis of Graphene using Two-Step Growth Process

  • Han, Jaehyun;Yeo, Jong-Souk
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.221.2-221.2
    • /
    • 2015
  • Graphene is very interesting 2 dimensional material providing unique properties. Especially, graphene has been investigated as a stretchable and transparent conductor due to its high mobility, high optical transmittance, and outstanding mechanical properties. On the contrary, high sheet resistance of extremely thin monolayer graphene limits its application. Artificially stacked multilayer graphene is used to decrease its sheet resistance and has shown improved results. However, stacked multilayer graphene requires repetitive and unnecessary transfer processes. Recently, growth of multilayer graphene has been investigated using a chemical vapor deposition (CVD) method but the layer controlled synthesis of multilayer graphene has shown challenges. In this paper, we demonstrate controlled growth of multilayer graphene using a two-step process with multi heating zone low pressure CVD. The produced graphene samples are characterized by optical microscope (OM) and scanning electron microscopy (SEM). Raman spectroscopy is used to distinguish a number of layers in the multilayer graphene. Its optical and electrical properties are also analyzed by UV-Vis spectrophotometer and probe station, respectively. Atomic resolution images of graphene layers are observed by high resolution transmission electron microscopy (HRTEM).

  • PDF

Synthesis of Graphene Using Polystyrene and the Effect of Boron Oxide on the Synthesis of Graphene (폴리스타이렌을 이용한 그래핀 합성 및 산화 붕소가 그래핀 합성에 미치는 영향)

  • Choi, Jinseok;An, Sung Jin
    • Korean Journal of Materials Research
    • /
    • v.28 no.5
    • /
    • pp.279-285
    • /
    • 2018
  • Graphene is an interesting material because it has remarkable properties, such as high intrinsic carrier mobility, good thermal conductivity, large specific surface area, high transparency, and high Young's modulus values. It is produced by mechanical and chemical exfoliation, chemical vapor deposition (CVD), and epitaxial growth. In particular, large-area and uniform single- and few-layer growth of graphene is possible using transition metals via a thermal CVD process. In this study, we utilize polystyrene and boron oxide, which are a carbon precursor and a doping source, respectively, for synthesis of pristine graphene and boron doped graphene. We confirm the graphene grown by the polystyrene and the boron oxide by the optical microscope and the Raman spectra. Raman spectra of boron doped graphene is shifted to the right compared with pristine graphene and the crystal quality of boron doped graphene is recovered when the synthesis time is 15 min. Sheet resistance decreases from approximately $2000{\Omega}/sq$ to $300{\Omega}/sq$ with an increasing synthesis time for the boron doped graphene.

Characteristic of Ni and Co metal-catalyst surface roughness in graphene (Ni와 Co 촉매금속의 표면 거칠기에 따른 그래핀 성장 특성)

  • Kim, Eun-Ho;An, Hyo-Sub;Jang, Hyon-Chul;Cho, Won-Ju;Lee, Wan-Kyu;Jung, Jong-Wan
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2010.06a
    • /
    • pp.263-263
    • /
    • 2010
  • High temperature annealing is required to synthesize graphene using CVD. When thin metal catalyst is used for the synthesis, the high temperature pre-annealing makes the thin catalyst highly agglomerated. We investigated the agglomeration effect on the shape of the synthesized graphene. It is found that high temperature annealing makes randomly distributed many hole or blister on metal catalyst, and the synthesized graphene features floral pattern around the hole. The floral patterns of graphene turned out to be multi-layers and higher D peaks in raman spectrum.

  • PDF

Controlling the Growth of Few-layer Graphene Dependent on Composition Ratio of Cu/Ni Homogeneous Solid Solution

  • Lim, Yeongjin;Choi, Hyonkwang;Gong, Jaeseok;Park, Yunjae;Jeon, Minhyon
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.273.1-273.1
    • /
    • 2014
  • Graphene, a two dimensional plane structure of $sp^2$ bonding, has been promised for a new material in many scientific fields such as physics, chemistry, and so on due to the unique properties. Chemical vapor deposition (CVD) method using transitional metals as a catalyst can synthesize large scale graphene with high quality and transfer on other substrates. However, it is difficult to control the number of graphene layers. Therefore, it is important to manipulate the number of graphene layers. In this work, homogeneous solid solution of Cu and Ni was used to control the number of graphene layers. Each films with different thickness ratio of Cu and Ni were deposited on $SiO_2/Si$ substrate. After annealing, it was confirmed that the thickness ratio accords with the composition ratio by X-ray diffraction (XRD). The synthesized graphene from CVD was analyzed via raman spectroscopy, UV-vis spectroscopy, and 4-point probe to evaluate the properties. Therefore, the number of graphene layers at the same growth condition was controlled, and the correlation between mole fraction of Ni and the number of graphene layers was investigated.

  • PDF