Browse > Article
http://dx.doi.org/10.3740/MRSK.2018.28.5.279

Synthesis of Graphene Using Polystyrene and the Effect of Boron Oxide on the Synthesis of Graphene  

Choi, Jinseok (Department of Advanced Materials Science and Engineering, Kumoh National Institute of Technology)
An, Sung Jin (Department of Advanced Materials Science and Engineering, Kumoh National Institute of Technology)
Publication Information
Korean Journal of Materials Research / v.28, no.5, 2018 , pp. 279-285 More about this Journal
Abstract
Graphene is an interesting material because it has remarkable properties, such as high intrinsic carrier mobility, good thermal conductivity, large specific surface area, high transparency, and high Young's modulus values. It is produced by mechanical and chemical exfoliation, chemical vapor deposition (CVD), and epitaxial growth. In particular, large-area and uniform single- and few-layer growth of graphene is possible using transition metals via a thermal CVD process. In this study, we utilize polystyrene and boron oxide, which are a carbon precursor and a doping source, respectively, for synthesis of pristine graphene and boron doped graphene. We confirm the graphene grown by the polystyrene and the boron oxide by the optical microscope and the Raman spectra. Raman spectra of boron doped graphene is shifted to the right compared with pristine graphene and the crystal quality of boron doped graphene is recovered when the synthesis time is 15 min. Sheet resistance decreases from approximately $2000{\Omega}/sq$ to $300{\Omega}/sq$ with an increasing synthesis time for the boron doped graphene.
Keywords
graphene; polystyrene; boron oxide; chemical vapor deposition;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. K. Geim, Science, 324, 1530 (2009).   DOI
2 A. K. Geim, and K. S. Novoselov, Nat. Mater., 6, 183 (2007).   DOI
3 X. Du, I. Skachko, A. Barker, and E. Y. Andrei, Nat. Nanotechnol., 3, 491 (2008).   DOI
4 R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, Science, 320, 1308 (2008).   DOI
5 K. S. Novoselov, A. K. Geim, S. V. Morzov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Science, 306, 666 (2004).   DOI
6 Y. Zhang, Y. -W. Tan, H. L. Stormer, and P. Kim, Nature, 438, 201 (2005).   DOI
7 C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, Z. Dai, A. N. Marchenkov, E. H. Conrad, P. N. First, and W. A. Heer, J. Phys. Chem. B, 108, 19912 (2004).   DOI
8 S. Stankovich, D. A. Dikin, R. D. Piner, K. A. Kohlhaas, A. Kleinhammers, Y. Jia, Y. Wu, S. T. Nguyen, and R. S. Ruoff, Carbon, 45, 1558 (2007).   DOI
9 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J. -H. Ahn, P. Kim, J. -Y Choi, and B. H. Hong, Nature, 457, 706 (2009).   DOI
10 X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo, and R. S. Ruoff, Science, 324, 1312 (2009).   DOI
11 S. Bae, H. Kim, Y. Lee, X. Xu, J. -S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y. -J. Kim, K. S. Kim, B. Özyilmaz, J. -H. Ahn, B. H. Hong, and S. Iijima, Nat. Nanotechnol., 5, 574 (2010).   DOI
12 I. Vlassiouk, M. Regmi, P. Fulvio, S. Dai, P. Datskos, G. Eres, and S. smirnov, ACS Nano, 5, 6069 (2011).   DOI
13 A. Reina, S. Thiele, X. Jia, S. Bhaviripudi, M. S. Dresselhaus, J. A., and Schaefer, J. Kong, Nano Res., 2, 509 (2009).   DOI
14 H. Zhou, W. J. Yu, L. Liu, R. Cheng, Y. Chen, X. Huang, Y. Liu, Y. Wang, Y. Huang, and X. Duan, Nat. Commun., 4, 2096 (2013).   DOI
15 B. Guo, L. Fang, B. Zhang, and J. R. Gong, Insciences J., 1, 80 (2011).
16 L. S. Panchakarla, K. S. Subrahmanyam, S. K. Saha, A. Govindaraj, H. R. Krishnamurthy, U. V. Waghmare, and C. N. R. Rao, Adv. Mater., 21, 2726 (2009).
17 R. Lv, Q. Li, A. R. Botello-Méndez, T. Hayashi, B. Wang, A. Berkdemir, Q. Hao, A. L. Elías, R. Cruz-Silva, H. R. Gutierrez, Y. A. Kim, H. Muramatsu, J. Zhu, M. Endo, H. Terrones, J. -C. Charlier, M. Pan, and M. Terrones, Sci. Rep., 2, 1 (2012).
18 M. Ahmed, N. Kishi, R. Sugita, A. Fukaya, I. Khatri, J. Liang, S. M. Mominuzzaman, T. Soga, and T. Jimbo, J. Mater. Sci.: Mater. Electron., 24, 2151 (2013).   DOI
19 Y. Miyata, K. Kamon, K. Ohashi, R. Kitaura, M. Yoshimura, and H. Shinohara, Appl. Phys. Lett., 96, 263105 (2010).   DOI
20 A. Srivastava, C. Galande, L. Ci, L. Song, C. Rai, D. Jariwala, K. F. Kelly, and P. M. Ajayan, Chem. Mater., 22, 3457 (2010).   DOI
21 G. Kalita, M. Matsushima, H. Uchida, K. Wakita, and M. Umeno, J. Mater. Chem., 20, 9713 (2010).   DOI
22 N. Liu, A. Chortos, T. Lei, L. Jin, T. R. Kim, W. -G. Bae, C. Zhu, S. Wang, R. Pfattner, X. Chen, R. Sinclair, and Z. Bao, Sci. Adv., 3, e1700159 (2017).   DOI
23 Z. -H. Sheng, H. -L. Gao, W. -J. Bao, F. -B. Wang, and X. -H. Xis, J. Mater. Chem., 22, 390 (2012).   DOI
24 C. Wang, Y. Zhou, L. He, T. -W. Ng, G. Gong, Q. -H. Wu, F. Gao, C. -S. Lee, and W. Zhang, Nanoscale, 5, 600 (2013).   DOI
25 A. Eckmann, A. Felten, A. Mishchenko, L. Britnell, R. Krupke, K. S. Novoselov, and C. Casiraghi, Nano Lett., 12, 3925 (2012).   DOI
26 S. J. An, Y. Zhu, S. H. Lee, M. D. Stoller, T. Emilsson, S. Park, A. Velamakanni, J. An, and R. S. Ruoff, J. Phys. Chem. Lett., 1, 1259 (2010).   DOI
27 X. Wang, G. Sun, P. Routh, D. -H. Kim, W. Huang, and P. Chen, Chem. Soc. Rev., 43, 7067 (2014).   DOI
28 H. L. Poh, P. Simek, Z. Sofer, I. Tomandl, and M. Pumera, J. Mater. Chem. A, 1, 13146 (2013).   DOI