DOI QR코드

DOI QR Code

Development of Integration Pressure Sensor Using Piezoresistive Effect of Chemical Vapor Deposition (CVD) Produced Multilayer Graphene

CVD공정으로 제작된 멀티레이어 그래핀의 압저항 효과를 이용한 직접화된 압력센서 개발

  • Dae-Yun Lim (Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Tae Won Ha (Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Chil-Hyoung Lee (Green Energy & Nano Technology R&D Group, Korea Institute of Industrial Technology (KITECH))
  • 임대윤 (한국생산기술연구원 그린에너지나노연구그룹) ;
  • 하태원 (한국생산기술연구원 그린에너지나노연구그룹) ;
  • 이칠형 (한국생산기술연구원 그린에너지나노연구그룹)
  • Received : 2023.11.13
  • Accepted : 2023.11.23
  • Published : 2023.11.30

Abstract

In this study, a diaphragm-type pressure sensor was developed using multi-layer(four-layer) graphene produced at 1 nm thickness by thermally transferring single-layer graphene produced by chemical vapor deposition (CVD) to a 6" silicon wafer. By measuring the gauge factor, we investigated whether it was possible to produce a pressure sensor of consistent quality. As a result of the measurement, the pressure sensor using multilayer graphene showed linearity and had a gauge factor of about 17.5. The gauge factor of the multilayer graphene-based pressure sensor produced through this study is lower than that of doped silicon, but is more sensitive than a general metal sensor, showing that it can be sufficiently used as a commercialized sensor.

Keywords

Acknowledgement

본 연구는 한국생산기술연구원 (Project No. EO230001)의 지원을 받아 작성하였습니다.

References

  1. K. Kim, M. Jung, S. Jeon, and J. Bae, "Robust and scalable three-dimensional spacer textile pressure sensor for human motion detection", Smart Mater. Struct., Vol. 28, No. 6, p. 065019, 2019.
  2. Y. Zang, F. Zhang, C.-A. Di, and D. Zhu, "Advances of flexible pressure sensors to- ward artificial intelligence and health care applications", Mat. Horiz., Vol. 2, No. 2, pp. 140-156, 2015. https://doi.org/10.1039/C4MH00147H
  3. Z. Lou, S. Chen, L. Wang, K. Jiang, and G. Shen, "An ultrasensitive and rapid response speed graphene pressure sensors for electronic skin and health monitoring", Nano Energy, Vol. 23, pp. 7-14, 2016. https://doi.org/10.1016/j.nanoen.2016.02.053
  4. C. G. Nunez, W. T. Navaraj, E. O. Polat, and R. Dahiya, "Energy-autonomous, flexible, and transparent tactile skin", Adv. Funct. Mater., Vol. 27, No. 18, p. 1606287 2017.
  5. Z. Chen, Z. Wang, X. Li, Y. Lin, N. Luo, M. Long, N. Zhao, and J.-B. Xu, "Flexible piezoelectric-induced pressure sensors for static measurements based on nanowires/graphene heterostructures", ACS Nano, Vol. 11, No. 5, pp. 4507-4513, 2017. https://doi.org/10.1021/acsnano.6b08027
  6. M.-X. Zhou, Q.-A. Huang, M. Qin, and W. Zhou, "A novel capacitive pressure sensor based on sandwich structures", J. Microelectromech. Syst., Vol. 14, No. 6, pp. 1272-1282, 2005. https://doi.org/10.1109/JMEMS.2005.859100
  7. M. Farhath and M. F. Samad, "Design and simulation of a high sensitive stripped-shaped piezoresistive pressure sensor", J. Comput. Electron., Vol. 19, No. 1, pp. 310-320, 2020. https://doi.org/10.1007/s10825-019-01429-w
  8. M. Xu, Y. Gao, G. Yu, C. Lu, J. Tan, and F. Xuan, "Flexible pressure sensor using carbon nanotube-wrapped polydimethylsiloxane microspheres for tactile sensing", Sens. Actuators A, Vol. 284, pp. 260-265, 2018. https://doi.org/10.1016/j.sna.2018.10.040
  9. S. Chun, Y. Choi, and W. Park, "All-graphene strain sensor on soft substrate", Carbon, Vol. 116, pp. 753-759, 2017. https://doi.org/10.1016/j.carbon.2017.02.058
  10. M. Caoa, J. Sua, S. Fana, H. Qiub, D. Sua, and L. Lic, "Wearable piezoresistive pressure sensors based on 3D graphene", Chem. Eng. J., Vol. 406, p. 126777, 2021.
  11. Q. Zheng, J.-h. Lee, X. Shen, X. Chen, J.-K. Kim, "Graphene-based wearable piezoresistive physical sensors", Mater. Today, Vol. 36, pp. 158-179, 2020. https://doi.org/10.1016/j.mattod.2019.12.004
  12. Q. Wu, Y. Qiao, Y. Fu, Y. Wei, G. Deng, Y. Yang, X. Wu, and T.-L. Ren, "Triode-Mimicking Graphene Pressure Sensor with Positive Resistance Variation for Physiology and Motion Monitoring", ACS Nano, Vol. 14, No. 8, pp. 10104-10114, 2020. https://doi.org/10.1021/acsnano.0c03294
  13. S.-H. Bae, Y. Lee, B. K. Sharma, H.-J. Lee, J.-H. Kim, and J.-H. Ahn, "Graphene-based transparent strain sensor", Carbon, Vol. 51, pp. 236-242, 2013. https://doi.org/10.1016/j.carbon.2012.08.048