Browse > Article
http://dx.doi.org/10.3807/KJOP.2021.32.3.114

Optical-reflectance Contrast of a CVD-grown Graphene Sheet on a Metal Substrate  

Lee, Chang-Won (Department of Applied Optics, School of Basic Sciences, Institute of Advanced Optics and Photonics, Hanbat National University)
Publication Information
Korean Journal of Optics and Photonics / v.32, no.3, 2021 , pp. 114-119 More about this Journal
Abstract
A large-area graphene sheet has been successfully grown on a copper-foil substrate by chemical vapor deposition (CVD) for industrial use. To screen out unsatisfactory graphene films as quickly as possible, noninvasive optical characterization in reflection geometry is necessary. Based on the optical conductivity of graphene, developed by the single-electron tight-binding method, we have investigated the optical-reflectance contrast. Depending on the four independent control parameters of layer number, chemical potential, hopping energy, and temperature, the optical-reflectance contrast can change dramatically enough to reveal the quality of the grown graphene sheet.
Keywords
Graphene; Optics; Optical contrast; Reflectance;
Citations & Related Records
연도 인용수 순위
  • Reference
1 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films," Science 306, 666-669 (2004).   DOI
2 A. K. Geim and K. S. Novoselov, "The rise of graphene," Nat. Mater. 6, 183-191 (2007).   DOI
3 R. R. Nair, P. Blake, A. N. Grigorenko, K. S. Novoselov, T. J. Booth, T. Stauber, N. M. R. Peres, and A. K. Geim, "Fine structure constant defines visual transparency of graphene," Science 320, 1308 (2008).   DOI
4 K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, "Ultrahigh electron mobility in suspended graphene," Solid State Commun. 146, 351-355 (2008).   DOI
5 F. Xia, T. Mueller, Y.-M. Lin, A. Valdes-Garcia, and P. Avouris, "Ultrafast graphene photodetector," Nat. Nanotechnol. 4, 839-843 (2009).   DOI
6 T. Mueller, F. Xia, and P. Avouris, "Graphene photodetectors for high-speed optical communications," Nat. Photonics 4, 297-301 (2010).   DOI
7 M. Losurdo, M. M. Giangregorio, P. Capezzuto, and G. Bruno, "Graphene CVD growth on copper and nickel: role of hydrogen in kinetics and structure," Phys. Chem. Chem. Phys. 13, 20836-20843 (2011).   DOI
8 X. Zhang, L. Wang, J. Xin, B. I. Yakobson, and F. Ding, "Role of hydrogen in graphene chemical vapor deposition growth on a copper surface," J. Am. Chem. Soc. 136, 3040-3047 (2014).   DOI
9 S. Kim, S. Shin, T. Kim, H. Du, M. Song, C. Lee, K. Kim, S. Cho, D. H. Seo, and S. Seo, "Robust graphene wet transfer process through low molecular weight polymethylmethacrylate," Carbon 98, 352-357 (2016).   DOI
10 A. H. C. Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Rev. Mod. Phys. 81, 109-162 (2009).   DOI
11 S. Cheon, C.-W. Lee, C.-W. Baik, and H. Jeong, "Tunable optical responses of a graphene-gold nanoparticle composite for visible light," New Phys. 67, 684-695 (2017).   DOI
12 J. H. Kang, J. Moon, D. J. Kim, Y. Kim, I. Jo, C. Jeon, J. Lee, and B. H. Hong, "Strain relaxation of graphene layers by Cu surface roughening," Nano Lett. 16, 5993-5998 (2016).   DOI
13 T. Stauber, N. M. R. Peres, and A. K. Geim, "Optical conductivity of graphene in the visible region of the spectrum," Phys. Rev. B 78, 085432 (2008).   DOI
14 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, "Large-scale pattern growth of graphene films for stretchable transparent electrodes," Nature 457, 706-710 (2009).   DOI
15 D. W. Kim, Y. H. Kim, H. S. Jeong, and H.-T. Jung, "Direct visualization of large-area graphene domains and boundaries by optical birefringency," Nat. Nanotechnol. 7, 29-34 (2012).   DOI
16 V. L. Nguyen, B. G. Shin, D. L. Duong, S. T. Kim, D. Perello, Y. J. Lim, Q. H. Yuan, F. Ding, H. Y. Jeong, H. S. Shin, S. M. Lee, S. H. Chae, Q. A. Vu, S. H. Lee, and Y. H. Lee, "Seamless stitching of graphene domains on polished copper (111) foil," Adv. Mater. 27, 1376-1382 (2015).   DOI
17 L. A. Falkovsky and S. S. Pershoguba, "Optical far-infrared properties of a graphene monolayer and multilayer," Phys. Rev. B 76, 153410 (2007).   DOI
18 D. Ding, H. Hibino, and H. Ago, "Grain boundaries and gas barrier property of graphene revealed by dark-field optical microscopy," J. Phys. Chem. C 122, 902-910 (2018).   DOI
19 X. H. Kong, H. X. Ji, R. D. Piner, H. F. Li, C. W. Magnuson, C. Tan, A. Ismach, H. Chou, and R. S. Ruoff, "Non-destructive and rapid evaluation of chemical vapor deposition graphene by dark field optical microscopy," Appl. Phys. Lett. 103, 043119 (2013).   DOI
20 X. Wu, G. Zhong, and J. Robertson, "Nondestructive optical visualisation of graphene domains and boundaries," Nanoscale 8, 16427-16434 (2016).   DOI
21 D. J. Kim, C.-W. Lee, Y. Suh, H. Jeong, I. Jo, J. Moon, M. Park, Y. S. Woo, and B. H. Hong, "Confocal laser scanning microscopy as a real-time quality-assessment tool for industrial graphene synthesis," 2D Mater. 7, 045014 (2020).   DOI
22 L. Hao and L. Sheng, "Optical conductivity of multilayer graphene," Solid State Commun. 149, 1962-1966 (2009).   DOI
23 F. Schwierz, "Graphene transistors," Nat. Nanotechnol. 5, 487- 496 (2010).   DOI
24 Y. Jin, B. Hu, Z. Wei, Z. Luo, D. Wei, Y. Xi, Y. Zhang, and Y. Liu, "Roles of H2 in annealing and growth times of graphene CVD synthesis over copper foil," J. Mater. Chem. A 2, 16208-16216 (2014).   DOI