• Title/Summary/Keyword: CVD (Chemical Vapor Deposition)

Search Result 722, Processing Time 0.029 seconds

Neutral Beam assisted Chemical Vapor Deposition at Low Temperature for n-type Doped nano-crystalline silicon Thin Film

  • Jang, Jin-Nyeong;Lee, Dong-Hyeok;So, Hyeon-Uk;Yu, Seok-Jae;Lee, Bong-Ju;Hong, Mun-Pyo
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.52-52
    • /
    • 2011
  • A novel deposition process for n-type nanocrystalline silicon (n-type nc-Si) thin films at room temperature has been developed by adopting the neutral beam assisted chemical vapor deposition (NBa-CVD). During formation of n-type nc-Si thin film by the NBa-CVD process with silicon reflector electrode at room temperature, the energetic particles could induce enhance doping efficiency and crystalline phase in polymorphous-Si thin films without additional heating on substrate; The dark conductivity and substrate temperature of P-doped polymorphous~nano crystalline silicon thin films increased with increasing the reflector bias. The NB energy heating substrate(but lower than $80^{\circ}C$ and increase doping efficiency. This low temperature processed doped nano-crystalline can address key problem in applications from flexible display backplane thin film transistor to flexible solar cell.

  • PDF

SiH4 Soak Effects in the W plug CVD Process (텡스텐 플러그 CVD 공정에서 SiH4 Soak의 영향)

  • 이우선;서용진;김상용;박진성
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.16 no.1
    • /
    • pp.1-4
    • /
    • 2003
  • The SiH$_4$soak step is widely used to prevent the WF$_{6}$ attack to the underlayer metal using the chemical vapor deposition (CVD) method. Reduction or skipping of the SiH$_4$soak process time if lead to optimizing W-plug deposition process on via. The electrical characteristics including via resistance and the structure of W-film are affected by the time of SiH$_4$soak process. The possibility of elimination of SiH$_4$soak process is confirmed In the case of W- film grown on the stable Ti/TiN underlayer.

Numerical Analysis of Silicon Deposition in CVD Reactor (화학기상 성장법에 의한 실리콘 부착에 관한 수치해석)

  • Kim, In;Baek, Byung-Joon;Yoon, Jeong-Mo;Lee, Cheul-Ro
    • Proceedings of the KSME Conference
    • /
    • 2000.11b
    • /
    • pp.359-364
    • /
    • 2000
  • The fluid flow, heat transfer and the local mass fi-action of chemical species in the chemical vapor deposition(CVD) manufacturing process are numerically studied. The deposition of silicon from dilute silane is hydrogen carrier gas in a horizontal CVD reactor is investigated. The effect of inlet carrier gas velocity, mass fraction of silane, susceptor angle on the deposition thickness and uniformity was represented.

  • PDF

Deposition of SiO2 Thin Film for the Core of Planar Light-Wave-Guide by Transformer Coupled Plasma Chemical-Vapor-Deposition (TCP-CVD 장비를 활용한 광도파로용 Core-SiO2 증착)

  • Kim, Chang-Jo;Shin, Paik-Kyun
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.230-235
    • /
    • 2010
  • In this paper, we controlled the deposition rate and reflective index with process conditions that are TCP power, gas flow ratio and bias for optical properties of $SiO_2$ thin film using TCP-CVD equipment. We obtained a excellent $SiO_2$ thin film which has a excellent uniformity (<1 [%]), deposition rate (0.28 [${\mu}m$/ min]) and reflective index (1.4610-1.4621) within 4" wafer with process conditions ($SiH_4:O_2$=50 : 100 [sccm], TCP power 1 [kW], bias 200 [W]) at [$300^{\circ}C$].

Deposition of Epitaxial Silicon by Hot-Wall Chemical Vapor Deposition (CVD) Technique and its Thermodynamic Analysis

  • Koh, Wookhyun;Yoon, Deoksun;Pa, ChinHo
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1998.06a
    • /
    • pp.173-176
    • /
    • 1998
  • Epitaxial Si layers were deposited on n- or p-type Si(100) substrates by hot-wall chemical vapor deposition (CVD) technique using the {{{{ {SiH }_{ 2} {Cl }_{2 } - {H }_{ 2} }}}}chemistry. Thermodynamic calculations if the Si-H-Cl system were carried out to predict the window of actual Si deposition procedd and to investigate the effects of process variables(i.e., the deposition temperature, the reactor pressure, and the source gas molar ratios) on the growth of epitaxial layers. The calculated optimum process conditions were applied to the actual growth runs, and the results were in good agreement with the calculation. The expermentally determined optimum process conditions were found to be the deposition temperature between 900 and 9$25^{\circ}C$, the reactor pressure between 2 and 5 Torr, and source gad molar ration({{{{ {H }_{2 }/ {SiH }_{ 2} {Cl }_{2 } }}}}) between 30 and 70, achieving high-quality epitaxial layers.

  • PDF

Growth of epitaxial silicon by hot-wall chemical vapor deposition (CVD) technique and its thermochemical analysis (고온벽 화학기상증착법을 이용한 에피 실리콘 증착과 열화학적 해석)

  • 윤덕선;고욱현;여석기;이홍희;박진호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.4
    • /
    • pp.215-221
    • /
    • 2002
  • Epitaxial Si layers were deposited on (100) Si substrates by hot-wall chemical vapor deposition (CVD) technique using the $SiH_2Cl_2/H_2$chemistry. Thermochemical calculations of the Si-H-Cl system were carried out to predict the window of actual Si deposition process and to investigate the effects of process variables (i.e., deposition temperature, reactor pressure, and input gas molar ratio ($H_2/SiH_2Cl_2$)) on the epitaxial growth. The calculated results were in good agreement with the experiment. Optimum process conditions were found to be the deposition temperature of 850~$950^{\circ}C$, the reactor pressure of 2~5 Torr, and the input gas molar ratio ($H_2/SiH_2Cl_2$) of 30~70, providing device-quality epitaxial layers.

Material and Structure Optimization of Substrate Support for Improving CVD Equipment Up Time (CVD 장비 Up Time 향상을 위한 기판 지지대의 재질 및 구조 최적화)

  • Woo, Ram;Kim, Won Kyung
    • Korean Journal of Materials Research
    • /
    • v.29 no.11
    • /
    • pp.670-676
    • /
    • 2019
  • We study substrate support structures and materials to improve uptime and shorten preventive maintenance cycles for chemical vapor deposition equipment. In order to improve the rolling of the substrate support, the bushing device adopts a ball transfer method in which a large ball and a small ball are mixed. When the main transfer ball of the bushing part of the substrate support contacts the substrate support, the small ball also rotates simultaneously with the rotation of the main ball, minimizing the resistance that can be generated during the vertical movement of the substrate support. As a result of the improvement, the glass substrate breakage rate is reduced by more than 90 ~ 95 %, and the equipment preventive maintenance and board support replacement cycles are extended four times or more, from once a month to more than four months, and the equipment uptime is at least 15 % improved. This study proposes an optimization method for substrate support structure and material improvement of chemical vapor deposition equipment.

Trend and Prospect of Thin Film Processing Technology (박막제조 기술의 동향과 전망)

  • Jeong, Jae-In;Yang, Ji-Hooon
    • Journal of the Korean Magnetics Society
    • /
    • v.21 no.5
    • /
    • pp.185-192
    • /
    • 2011
  • The technique of producing thin film plays a crucial role in modern science and technology as well as in industrial purposes. Numerous efforts have been made to get high quality thin film through surface treatment of materials. PVD (Physical Vapor Deposition) and CVD (Chemical Vapor Deposition) are two of the most popular deposition techniques used in both scientific study and industrial use. It is well known that the film deposited by PVD and CVD commonly possesses a columnar microstructure which affects many film properties. In recent years, various types of deposition sources which feature high material uses and excellent film properties have been developed. Electromagnetic levitation source appeared as an alternative deposition source to realize high deposition rate for industrial use. Complex film structures such as nano multilayer and multi-components have been prepared to achieve better film properties. Glancing angle deposition (GLAD) has also been developed as a technique to engineer the columnar structure of thin films on the micro- and nanoscale. In this paper, the trends and major issues of thin film technology based on PVD and CVD have been discussed together with the prospect of thin film technology.

Thermodynamic analysis of the deposition process of SiC/C functionally gradient materials by CVD technique (CVD법을 이용한 SiC/C경사기능재료 증착공정의 열역학적 해석)

  • 박진호;이준호;신희섭;김유택
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.2
    • /
    • pp.101-109
    • /
    • 2002
  • A complex chemical equilibrium analysis was performed to study the hot-wall CVD process of the SiC/C functionally gradient materials (FGM). Thermochemical calculations of the Si-C-H-Cl system were carried out, and the effects of process variables(deposition temperature, reactor pressure, C/[Si+C] and H/[Si+C] ratios in the source gas) on the composition of deposited layers and the deposition yield were investigated. The CVD phase diagrams of the SiC/C FGM deposition were obtained, and the optimum process windows were estimated from the results.

Protective SiC Coating on Carbon Fibers by Low Pressure Chemical Vapor Deposition

  • Bae, Hyun Jeong;Kim, Baek Hyun;Kwon, Do-Kyun
    • Korean Journal of Materials Research
    • /
    • v.23 no.12
    • /
    • pp.702-707
    • /
    • 2013
  • High-quality ${\beta}$-silicon carbide (SiC) coatings are expected to prevent the oxidation degradation of carbon fibers in carbon fiber/silicon carbide (C/SiC) composites at high temperature. Uniform and dense ${\beta}$-SiC coatings were deposited on carbon fibers by low-pressure chemical vapor deposition (LP-CVD) using silane ($SiH_4$) and acetylene ($C_2H_2$) as source gases which were carried by hydrogen gas. SiC coating layers with nanometer scale microstructures were obtained by optimization of the processing parameters considering deposition mechanisms. The thickness and morphology of ${\beta}$-SiC coatings can be controlled by adjustment of the amount of source gas flow, the mean velocity of the gas flow, and deposition time. XRD and FE-SEM analyses showed that dense and crack-free ${\beta}$-SiC coating layers are crystallized in ${\beta}$-SiC structure with a thickness of around 2 micrometers depending on the processing parameters. The fine and dense microstructures with micrometer level thickness of the SiC coating layers are anticipated to effectively protect carbon fibers against the oxidation at high-temperatures.