• Title/Summary/Keyword: CMOS receiver

Search Result 222, Processing Time 0.026 seconds

6.25-Gb/s Optical Receiver Using A CMOS-Compatible Si Avalanche Photodetector

  • Kang, Hyo-Soon;Lee, Myung-Jae;Choi, Woo-Young
    • Journal of the Optical Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.217-220
    • /
    • 2008
  • An optical receiver using a CMOS-compatible avalanche photodetector (CMOS-APD) is demonstrated. The CMOS-APD is fabricated with $0.18{\mu}m$ standard CMOS technology and the optical receiver is implemented by using the CMOS-APD and a transimpedance amplifier on a board. The optical receiver can detect 6.25-Gb/s data with the help of the series inductive peaking effect.

A Design of Non-Coherent CMOS IR-UWB Receiver (비동기식 CMOS IR-UWB 수신기의 설계 및 제작)

  • Ha, Min-Cheol;Park, Young-Jin;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.19 no.9
    • /
    • pp.1045-1050
    • /
    • 2008
  • In this paper presents a CMOS RF receiver for IR-UWB wireless communications is presented. The impulse radio based UWB receiver adopts the non-coherent demodulation that simplifies the receiver architecture and reduces power consumption. The IR-UWB receiver consists of LNA, envelop detector, VGA, and comparator and the receiver including envelope detector, VGA, and comparator is fabricated on a single chip using $0.18{\mu}m$ CMOS technology. The measured sensitivity of IR-UWB receiver is down to -70 dBm and the BER $10^{-3}$, respectively at data rate 1 Mbps. The current consumption of IR-UWB receiver except external LNA is 5 mA at 1.8 V.

Design of CMOS Optical Link Receiver for FTTH (FTTH용 CMOS Optical Link Receiver의 설계)

  • Kim Kyu-Chull
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.1
    • /
    • pp.47-52
    • /
    • 2004
  • This paper presents a CMOS optical receiver design featuring wide input dynamic range and low bit error rate suitable for FTTH application. We achieved 60dB input dynamic range for up to 100Mbps by controlling the PMOS feedback resistance of transimpedance preamplifier according to its output signal level. Auto-bias circuit is designed in current mirror configuration to minimize duty error. Circuit simulation has been performed using 2-poly, 3-metal, 0.6um CMOS process parameters. The designed receiver consumes less than 130mW at 100Mbps with 5V power supply.

The Design of A CMOS Gm-C Lowpass Filter with Variable Cutoff Frequency for Direct Conversion Receiver (직접변환 수신기용 가변 차단주파수특성을 갖는 CMOS Gm-C 저역통과필터 설계)

  • Bang, Jun-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.8
    • /
    • pp.1464-1469
    • /
    • 2008
  • A CMOS Gm-C filter with variable cutoff frequency applicable for using in the direct conversion receiver is designed. The designed filter comprises the CMOS differential transconductors, and the gm of the transconductor is controlled by the bias voltage. This configuration can compensate variant of the cutoff frequency which could be generated by external noises, and also be used in multiband receiver. As a results of HSPICE simulation, the control range of the cutoff frequency is $1.5MHz{\sim}3.5MHz$ and the gain control range is $-2.8dB{\sim}2.6dB$. The layout of the designed 5th-order Elliptic low-pass filter is performed to fabricate a chip using $2.5V-0.25{\mu}m$ CMOS processing parameter.

A Low Power Single-End IR-UWB CMOS Receiver for 3~5 GHz Band Application (3~5 GHz 광대역 저전력 Single-Ended IR-UWB CMOS 수신기)

  • Ha, Min-Cheol;Park, Byung-Jun;Park, Young-Jin;Eo, Yun-Seong
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.7
    • /
    • pp.657-663
    • /
    • 2009
  • A fully integrated single ended IR-UWB receiver is implemented using 0.18 ${\mu}m$ CMOS technology. The UWB receiver adopts the non-coherent architecture, which simplifies the RF architecture and reduces power consumption. The receiver consists of single-ended 2-stage LNAs, S2D, envelope detector, VGA, and comparator. The measured results show that sensitivity is -80.8 dBm at 1 Mbps and BER of $10^{-3}$. The receiver uses no external balun and the chip size is only $1.8{\times}0.9$ mm. The consumed current is very low with 13 mA at 1.8 V supply and the energy per bit performance is 23.4 nJ/bit.

A Power-adjustable Fully-integrated CMOS Optical Receiver for Multi-rate Applications

  • Park, Kangyeob;Yoon, Eun-Jung;Oh, Won-Seok
    • Journal of the Optical Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.623-627
    • /
    • 2016
  • A power-adjustable fully-integrated CMOS optical receiver with multi-rate clock-and-data recovery circuit is presented in standard 65-nm CMOS technology. With supply voltage scaling, key features of the optical receiver such as bandwidth, power efficiency, and optical sensitivity can be automatically optimized according to the bit rates. The prototype receiver has −23.7 dBm to −15.4 dBm of optical sensitivity for 10−9 bit error rate with constant conversion gain around all target bit rates from 1.62Gbps to 8.1 Gbps. Power efficiency is less than 9.3 pJ/bit over all operating ranges.

A 3-5 GHz Non-Coherent IR-UWB Receiver

  • Ha, Min-Cheol;Park, Young-Jin;Eo, Yun-Seong
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.8 no.4
    • /
    • pp.277-282
    • /
    • 2008
  • A fully integrated inductorless CMOS impulse radio ultra-wideband (IR-UWB) receiver is implemented using $0.18\;{\mu}m$ CMOS technology for 3-5 GHz application. The UWB receiver adopts the non-coherent architecture, which removes the complexity of RF architecture and reduces power consumption. The receiver consists of inductorless differential three stage LNA, envelope detector, variable gain amplifier (VGA), and comparator. The measured sensitivity is -70 dBm in the condition of 5 Mbps and BER of $10^{-3}$. The receiver chip size is only $1.8\;mm\;{\times}\;0.9\;mm$. The consumed current is 15 mA with 1.8 V supply.

Design of K-Band CMOS Four-Port Direct Conversion Receiver for BPSK Demodulation (BPSK 복조를 위한 K-Band CMOS Four-Port 직접 변환 수신기 설계)

  • Moon, Seong-Mo;Park, Dong-Hoon;Yu, Jong-Won;Lee, Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.2
    • /
    • pp.129-135
    • /
    • 2010
  • In this paper, we propose and demonstrate a new four-port BPSK direct conversion receiver based on $0.18\;{\mu}m$ CMOS technology for K-band applications. The proposed direct conversion receiver is composed of two active combiners, an lumped LC balun, two power detectors and an analog decode. The designed direct conversion receiver is successfully demodulated BPSK signal with 40 Mbps in the K-band.

Design of a CMOS Base-Band Analog Receiver for Wireless Home Network (무선 홈 네트워크용 CMOS 베이스밴드 아날로그 수신단의 설계)

  • 최기원;송민규
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.40 no.2
    • /
    • pp.111-116
    • /
    • 2003
  • In this paper, a CMOS baseband analog receiver for wireless home network is discussed. It is composed of a Gilbert type mixer, an Elliptic 6th order 1ow pass filter, and a 6-bit A/D converter. The main role of the mixer is generating a mixed analog signal between the 200MHz output signal of CMOS RF stage and the 199MHz local oscillator. After the undesired high frequency component of the mixed signal comes out. Finally, the analog signal is converted into digital code at the 6-bit A/D converter, The proposed receiver is fabricated with 0.25${\mu}{\textrm}{m}$ 1-poly 5-metal CMOS technology, and the chip area is 200${\mu}{\textrm}{m}$ X1400${\mu}{\textrm}{m}$. the receiver consumes 130㎽ at 2.5V power supply.