• Title/Summary/Keyword: CMOS pass-transistor

Search Result 37, Processing Time 0.023 seconds

Electrical Characteristics of SRAM Cell with Stacked Single Crystal Silicon TFT Cell (Stacked Single Crystal Silicon TFT Cell의 적용에 의한 SRAM 셀의 전기적인 특성에 관한 연구)

  • Kang, Ey-Goo;Kim, Jin-Ho;Yu, Jang-Woo;Kim, Chang-Hun;Sung, Man-Young
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.19 no.4
    • /
    • pp.314-321
    • /
    • 2006
  • There have been great demands for higher density SRAM in all area of SRAM applications, such as mobile, network, cache, and embedded applications. Therefore, aggressive shrinkage of 6 T Full CMOS SRAM had been continued as the technology advances. However, conventional 6 T Full CMOS SRAM has a basic limitation in the cell size because it needs 6 transistors on a silicon substrate compared to 1 transistor in a DRAM cell. The typical cell area of 6 T Full CMOS SRAM is $70{\sim}90\;F^2$, which is too large compared to $8{\sim}9\;F^2$ of DRAM cell. With 80 nm design rule using 193 nm ArF lithography, the maximum density is 72 Mbits at the most. Therefore, pseudo SRAM or 1 T SRAM, whose memory cell is the same as DRAM cell, is being adopted for the solution of the high density SRAM applications more than 64 M bits. However, the refresh time limits not only the maximum operation temperature but also nearly all critical electrical characteristics of the products such as stand_by current and random access time. In order to overcome both the size penalty of the conventional 6 T Full CMOS SRAM cell and the poor characteristics of the TFT load cell, we have developed S3 cell. The Load pMOS and the Pass nMOS on ILD have nearly single crystal silicon channel according to the TEM and electron diffraction pattern analysis. In this study, we present $S^3$ SRAM cell technology with 100 nm design rule in further detail, including the process integration and the basic characteristics of stacked single crystal silicon TFT.

Design of an Analog Array using Enhancement of Electric Field on Floating Gate MOSFETs (부유게이트에 지역전계강화 효과를 이용한 아날로그 어레이 설계)

  • Chai, Yong-Yoong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.8
    • /
    • pp.1227-1234
    • /
    • 2013
  • An analog array with a 1.2 double poly floating gate transistor has been developed with a standard CMOS fabrication process. The programming of each cell by means of an efficient control circuit eliminates the unnecessary erasing operation which has been widely used in conventional analog memories. It is seen that the path of the signal for both the programming and the reading is almost exactly the same since just one comparator supports both operations. It helps to eliminate the effects of the amplifier input-offset voltage problem on the output voltage for the read operation. In the array, there is no pass transistor isolating a cell of interest from the adjacent cells in the array. Instead of the extra transistors, one extra bias voltage, Vmid, is employed. The experimental results from the memory shows that the resolution of the memory is equivalent to the information content of at least six digital cells. Programming/erasing of each cell is achieved with no detectable disturbance of adjacent cells. Finally, the unique shape of the injector structure in a EEPROM is adopted as a cell of analog array. It reduces the programming voltage below the transistor breakdown voltage without any special fabrication process.

Design of an Analog Array Using Floating Gate MOSFETs (부유게이트를 이용한 아날로그 어레이 설계)

  • 채용웅;박재희
    • Journal of the Korean Institute of Telematics and Electronics C
    • /
    • v.35C no.10
    • /
    • pp.30-37
    • /
    • 1998
  • An analog array with a 1.2 $\mu\textrm{m}$ double poly floating gate transistor has been developed with a standard CMOS fabrication process. The programming of each cell by means of an efficient control circuit eliminates the unnecessary erasing operation which has been widely used in conventional analog memories. It is seen that the path of the signal for both the programming and the reading is almost exactly the same since just one comparator supports both operations. It helps to eliminate the effects of the amplifier input-offset voltage problem on the output voltage for the read operation. In the array, there is no pass transistor isolating a cell of interest from the adjacent cells in the array. Instead of the extra transistors, one extra bias voltage, Vmid, is employed. The experimental results from the memory shows that the resolution of the memory is equivalent to the information content of at least six digital cells. Programming/erasing of each cell is achieved with no detectable disturbance of adjacent cells. Finally, the unique shape of the injector structure in a EEPROM is adopted as a cell of analog array. It reduces the programming voltage below the transistor breakdown voltage without any special fabrication process.

  • PDF

A New Design of High-Speed 1-Bit Full Adder Cell Using 0.18${\mu}m$ CMOS Process (0.18${\mu}m$ CMOS 공정을 이용한 새로운 고속 1-비트 전가산기 회로설계)

  • Kim, Young-Woon;Seo, Hea-Jun;Cho, Tae-Won
    • Journal of IKEEE
    • /
    • v.12 no.1
    • /
    • pp.1-7
    • /
    • 2008
  • With the recent development of portable system such as mobile communication and multimedia. Full adders are important components in applications such as digital signal processors and microprocessors. Thus It is important to improve the power dissipation and operating speed for designing a full adder. We propose a new adder with modified version of conventional Ratioed logic and Pass Transistor logic. The proposed adder has the advantages over the conventional CMOS, TGA, 14T logic. The delay time is improved by 13% comparing to the average value and PDP(Power Delay Product) is improved by 9% comparing to the average value. Layouts have been carried out using a 0.18um CMOS design rule for evaluation purposes. The physical design has been evaluated using HSPICE.

  • PDF

Design of a 96-dB SNR and Low-Pass Digital Oversampling Noise-Shaping Coder for Low Supply Voltage (저 전압용 96-dB 신호대잡음비를 갖는 저역통과 디지털 과표본화 잡음변형기의 설계)

  • 김대정;손영철
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.41 no.5
    • /
    • pp.91-97
    • /
    • 2004
  • A digital over-sampling noise-shaping coder to achieve the processing accuracy for the audio signal bandwidth is designed. In order to implement an optimized design of the noise-shaping coder as a form of U (intellectual property), circuit design techniques that optimize the multiplication and the ROM architectures are proposed with emphasis on the low-voltage operation under 2.0 V and the minimization of the hardware resources. In the design and verification methodology, the overall architectures and the internal bit width have been determined through behavioral simulations. The overall performances including timing margin have been estimated through transistor-level simulations. Furthermore, the test results of the implemented chip using a 0.35-${\mu}{\textrm}{m}$ standard CMOS process proposed the validity of the proposed circuits and the design methodology.

Design of a $54{\times}54$-bit Multiplier Based on a Improved Conditional Sum Adder (개선된 조건 합 가산기를 이용한 $54{\times}54$-bit 곱셈기의 설계)

  • Lee, Young-Chul;Song, Min-Kyu
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.37 no.1
    • /
    • pp.67-74
    • /
    • 2000
  • In this paper, a $54{\times}54$-bit multiplier based on a improved conditional sum adder is proposed. To reduce the multiplication time, high compression-rate compressors without Booth's Encoding, and a 108-bit conditional sum adder with separated carry generation block, are developed. Furthermore, a design technique based on pass-transistor logic is utilized for optimize the multiplication time and the power consumption by about 5% compared to that of conventional one. With $0.65{\mu}m$, single-poly, triple-metal CMOS process, its chip size is $6.60{\times}6.69\;mm^2$ and the multiplication time is 135.ns at a 3.3V power supply.

  • PDF

Design of a Low-Power Parallel Multiplier Using Low-Swing Technique (저 전압 스윙 기술을 이용한 저 전력 병렬 곱셈기 설계)

  • Kim, Jeong-Beom
    • The KIPS Transactions:PartA
    • /
    • v.14A no.3 s.107
    • /
    • pp.147-150
    • /
    • 2007
  • This paper describes a new low-swing inverter for low power consumption. To reduce a power consumption, an output voltage swing is in the range from 0 to VDD-2VTH. This can be done by the inverter structure that allow a full swing or a swing on its input terminal without leakage current. Using this low-swing voltage technology, we proposed a low-power 16$\times$16 bit parallel multiplier. The proposed circuits are designed with Samsung 0.35$\mu$m standard CMOS process at a 3.3V supply voltage. The validity and effectiveness are verified through the HSPICE simulation.. Compared to the previous works, this circuit can reduce the power consumption rate of 17.3% and the power-delay product of 16.5%.

Sum-selector generation algorithm based 64-bit adder design (SUM 선택신호 발생 방식을 이용한 64-bit 가산기의 설계)

  • 백우현;김수원
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.35D no.1
    • /
    • pp.41-48
    • /
    • 1998
  • This paper proposes a new addition algorithm to improve the addition speed which is one of the important factors for data path functions. We have designed a fast 64-bit adder utilizing al dynamic chain architecture based on the proposed Sum-Selector Generation (SSG) algorithm. Proposed adder is designed with pass-transistor logicto achieve a high speed operation in low voltage circumstance. Realized 64-bit adder with 0.8.mu.m CMOS double-metal process technology has been fully tested. it operates at 185 MHz with 5.0V and chip area occupies 3.66mm$^{2}$. It is also demonstrated that designed adder operates even at 2.0V power supply condition.

  • PDF

Analysis and Comparison on Full Adder Block in Deep-Submicron Technology (미세공정상에서 전가산기의 해석 및 비교)

  • Lee, Woo-Gi;Kim, Jeong-Beom
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.67-70
    • /
    • 2003
  • In this paper the main topologies of one-bit full adders, including the most interesting of those recently proposed, are analyzed and compared for speed, power consumption, and power-delay product. The comparison has been performed on circuits, optimized transistor dimension to minimize power-delay product. The investigation has been carried out with properly defined simulation runs on a Cadence environment using a 0.25-${\mu}m$ process, also including the parasitics derived from layout. Performance has been also compared for different supply voltage values. Thus design guidelines have been derived to select the most suitable topology for the design features required. This paper also proposes a novel figure of merit to realistically compare n-bit adders implemented as a chain of one-bit full adders. The results differ from those previously published both for the more realistic simulations carried out and the more appropriate figure of merit used. They show that, except for short chains of blocks or for cases where minimum power consumption is desired, topologies with only pass transistors or transmission gates are not attractive.

  • PDF

Mixed Driving Circuit for QVGA-Scale LDI (QVGA급 LDI를 위한 혼합 구동 회로)

  • Ko, Young-Keun;Kwon, Yong-Jung;Lee, Sung-Woo;Kim, Hak-Yun;Choi, Ho-Yong
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.573-574
    • /
    • 2008
  • In this paper, we propose a mixed driving circuit for the source driver of QVGA-scale TFT-LCD driver IC to reduce the area of the source driver. In the mixed driving circuit, graphic data pass or go through the mixed channel driver whether RGB data are the same or not. The mixed driving circuit has been designed in transistor level using the 0.35um CMOS technology and has been verified using Hspice.

  • PDF